| 研究生: |
陳耿銘 Chen, Ken-Ming |
|---|---|
| 論文名稱: |
以遺傳演算法為基底的混合混沌參數變動系統軌跡追蹤器 Evolutionary-Programming-Based Tracker for Hybrid Chaotic Interval Systems |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 遺傳演算法 、參數變動混沌系統 、預測基底 |
| 外文關鍵詞: | prediction-based, evolutionary programming, Chaotic Interval Systems |
| 相關次數: | 點閱:60 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在探討針對一個參數變動混沌系統的最佳化軌跡追蹤器設計。首先,我們使用最佳線性化的方法去獲得一個離散時間、非線性、非時變系統的線性模型,使得傳統追蹤器的設計法則可以適用在非線性系統上,再將已設計好的追蹤器,利用狀態吻合數位再設計的方法去設計一個預測基底的數位追蹤器。然後,我們再進一步討論參數變動的系統。由於本文提出的參數變動系統的參數是在一有界的範圍內變動,故我們引用遺傳演算法來搜尋最佳化控制器,此法是一種強者生存並自我繁殖變化,進而成為更突出個體的演算法。最後,最佳化追蹤器的實現,也代表此系統最差情形的實現,將以上兩者一起在本文中討論是為了證明此最佳化追蹤器的效用。
The nominal optimal tracker for the chaotic nonlinear interval system is first proposed in this thesis. First, we use an optimal linearization methodology to obtain the exact linear models of a class of discrete-time nonlinear time-invariant systems at operating states of interest, so that the conventional tracker can work for the nonlinear systems. A prediction-based digital tracker using the state-matching digital redesign method from a predesigned, state-feedback, continuous-time tracker for a hybrid chaotic system is presented. Then, we discuss the system has interval parameters. The interval system treated has interval and bounded parameters. The proposed evolutionary programming (EP) technique yields the strongest species to survive, reproduces themselves, and creates more outstanding offspring. The worst-case realization of the sampled-data nonlinear uncertain systems represented by the interval form with respect to the implemented "best" tracker is also found in this thesis for demonstrating the effectiveness of the proposed tracker.
[1] Cao, Y. J., "Eigenvalue optimization problems via evolutionary programming," Electronics Letters, vol. 33, pp. 642-643, 1997.
[2] Chen, G., Wang, J. W. and Shieh, L. S., "Interval Kalman filtering," IEEE Trans. on Aerospace and Electronic Systems, vol. 33, pp. 250-259, 1997.
[3] Chen T. and B. A. Francis, Optimal Sampled-Data Control Systems, New York: Springer-Verlag, 1995.
[4] Fogel, D. B., "An overview of evolutionary programming," Evolutionary Algorithms, Davis, L. D., Jong, K. D., Vose, M. D. and Whitley, L. D., Eds, New York: Springer-Verlag, IMA-vol. 11, pp. 89-109, 1999.
[5] Fogel, D. B., Evolutionary Computation: The Fossil Record, New Jersey: IEEE Press, 1998.
[6] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA: Addison-Wesley, pp. 59-88, 1989.
[7] Guo S. M., L. S. Shieh, G. Chen and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems–I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570 , November 2000.
[8] Guo S. M., “Evolutionary-Programming-Based Kalman Filter for Uncertain Discrete -Time Nonlinear Systems,” Ph. D of Dissertation by University of Houston, May 2000.
[9] Halton, J. H., "On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals," Numerische Mathematik, vol. 2, pp. 84-90, 1960 with Corrigenda on p. 196.
[10] Hammersley, J. M. and Handscomb, D. C., Monte Carlo Methods, London: Methuen, 1964.
[11] Juang, J. N., Applied System Identification, New Jersey: Prentice-Hall, 1994.
[12] Kramer, S. C. and Martin, R. C. IV., "Direct optimization of gain scheduled trackers via genetic algorithms," Journal of Guidance, Control, and Dynamics, vol. 19, pp. 636-642, 1996.
[13] Krishnakumar, K. and Goldberg, D. E., "Control system optimization using genetic algorithm," Journal of Guidance, Control, and Dynamics, vol. 15, pp. 735-740, 1992.
[14] Lewis F. L. and V.L. Syrmos, Optimal Control, 2nd Edition, New York: Wiley, 1986.
[15] Man, K. F., Tang, K. S. and Kwang, S., Genetic Algorithms: Concepts and Design, London: Springer-Verlag, 1999.
[16] Michalewicz, Z., Genetic Algorithm + Data Structure = Evolution Programs, New York: Springer-Verlag, 1996.
[17] Polak, E. and Wardi, Y. Y., "Nondifferentiable optimization algorithm for designing control systems having singular value inequalities," Automatica, vol. 18, pp. 267-283, 1982
[18] Rafee N., T. Chen and O. P. Malik, “A technique for optimal digital redesign of analog trackers,” IEEE Transactions on Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997.
[19] Shieh L. S., W. M. Wang and M. K. Appu Panicker, “Design of PAM and PWM digital trackers for cascaded systems,” ISA Transactions, vol. 37, pp. 201-213, 1998.
[20] Van Der Corput, J. C. "Verteilungsfunktionen," Proc. Kon Akad. Wet., Amsterdam, vol. 38, pp. A13-A21, pp.1058-1066, 1935.