簡易檢索 / 詳目顯示

研究生: 游敏育
Yo, Ming-Yu
論文名稱: 分散式發電系統之最佳安置點、侵入等 級與諧波放大之研究
A Study on Optimal Placement, Penetration, and Harmonic Distortion of Distributed Generation System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 99
中文關鍵詞: 分散式發電最佳安置點諧波侵入等級
外文關鍵詞: optimal placement, penetration levels, harmonic, distributed generation
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
      隨著分散式發電在電力系統中所占的比重持續增加,其
    對系統所造成的各種衝擊也成為相當重要的一個議題。本論
    文首先探討分散式電源在系統中的裝置點,經由一個目標函
    數以及系統損失的概念來決定分散式電源在網路中的最佳
    裝置點。接著在考慮在電壓諧波的限制條件下,觀察饋線的
    長度與連接系統所能夠承擔的分散式電源侵入等級之關
    係。最後則利用國內兩個風力發電實際系統的量測與模擬,
    來觀察地下電纜長度對電流諧波放大的情形,結果並顯示計
    算時所選取的基頻電流也會影響電流總諧波失真之值。

    Abstract
     As distributed generation systems (DGS) continue to play
    an important role and have increasing trend on an electric power
    system, the impacts of DGS on power system have become a
    very important issue. In this thesis, an objective function and the
    concept of system electric loss are first proposed to determine
    the optimal placement of DGS in a connected power system.
    The relationship between feeder length and allowable
    penetration levels of DGS based on harmonic limit
    considerations are then calculated. The amplification effect of
    current harmonic distortion caused by underground cable of a
    DGS is also presented and two practical wind power systems in
    Taiwan are utilized to verify the effect. Simulated results show
    that the length of underground cable have obvious effect on the
    amplification of total harmonic distortion of current generated
    by DGS.

    目 錄 頁次 中文摘要................................................................................ I 英文摘要...............................................................................II 誌謝..................................................................................... III 目錄..................................................................................... IV 表目錄................................................................................VII 圖目錄................................................................................. IX 符號說明............................................................................XII 第一章 緒論.......................................................................... 1 1.1 研究背景與動機................................................ 1 1.2 相關文獻回顧.................................................... 2 1.3 研究內容概述.................................................... 7 第二章 分散式發電............................................................. 9 2.1 前言.................................................................... 9 2.2 分散式電源之定義.......................................... 10 2.3 分散式發電之優勢.......................................... 12 2.3.1 小型分散式系統很容易找到裝置點........ 12 2.3.2 減少成本及損失....................................... 13 2.3.3 技術的進步使發電效率大大提高............ 13 2.3.4 改善電力品質及可靠度........................... 14 2.3.5 減少環境污染........................................... 15 2.3.6 偏遠地區的負載需求............................... 16 2.4 分散式發電之種類.......................................... 17 2.4.1 依照不同的發電能源............................... 17 2.4.2 依照不同的併聯方式............................... 18 2.5 分散式發電造成之系統衝擊.......................... 20 2.5.1 系統電視損失........................................... 20 2.5.2 諧波問題................................................... 21 2.5.3 逆送電力................................................... 23 2.6 本章結論.......................................................... 24 第三章 分散式電源之最佳安置選定............................... 25 3.1 前言.................................................................. 25 3.2 最佳安置點之目標函數推導.......................... 25 3.3 模擬結果.......................................................... 31 3.4 結論.................................................................. 39 第四章 分散式電源的侵入等級分析............................... 42 4.1 前言.................................................................. 42 4.2 理論分析.......................................................... 43 4.3 公式推導.......................................................... 45 4.3.1 均勻分配之饋線....................................... 46 4.3.2 線性遞增之饋線....................................... 47 4.3.3 線性遞減之饋線....................................... 48 4.3.4 存在兩條以上之饋線的系統................... 50 4.4 模擬結果.......................................................... 52 4.4.1 單一饋線之侵入等級分析....................... 53 4.4.2 多條饋線之侵入等級分析....................... 56 4.5 結論.................................................................. 64 第五章 地下電纜對電流諧波放大效應之分析................ 65 5.1 前言.................................................................. 65 5.2 系統分析.......................................................... 65 5.2.1 配電地下化............................................... 65 5.2.2 系統介紹................................................... 67 5.2.3 分程式的推導........................................... 69 5.3 模擬與實測結果.............................................. 71 5.3.1 參數選取與實測結果............................... 71 5.3.2 模擬結果................................................... 76 5.4 結論.................................................................. 84 第六章 結論與未來研究方向........................................... 85 6.1 結論.................................................................. 85 6.2 未來研究方向.................................................. 86 附錄A ................................................................................. 88 參考文獻............................................................................. 95 作者自述............................................................................. 99

    參考文獻
    [1] P.P. Barker and R.W. De Mello, “Determining the impact
    of distributed generation on power systems, I. Radial
    distribution systems,” IEEE 2000 Power Engineering
    Society Summer Meeting, vol. 3, 16-20 July 2000, pp.
    1645-1656.
    [2] R. Ramakumar and P. Chiradeja, “Distributed generation
    and renewable energy systems,” The 37th Intersociety
    Energy Conversion Engineering Conference, IECEC 2002,
    29-31 July 2004, pp. 716-724.
    [3] N. Hatziargyriou, M. Donnelly, S. Papathanassiou, J.A.P.
    Lopes, M. Takasaki, H. Chao, J. Usaola, R. Lasseter, and A.
    Efthymiadis, “Modeling new forms of generation and
    storage,” CIGRE Technical Brochure, GIGRE TF38.01.10,
    June 2000.
    [4] S.M. Brahma and A.A. Girgis, “Development of adaptive
    protection scheme for distribution systems with high
    penetration of distributed generation,” IEEE Trans. Power
    Delivery, vol. 19, no. 1, Jan. 2004, pp. 56-63.
    [5] S.K. Salman and I.M. Rida, “Investigating the impact of
    embedded generation on relay settings of utilities electrical
    feeders,” IEEE Trans. Power Delivery, vol. 16, no. 2, April
    2001, pp. 246-251.
    [6] J. Liu, X. Feng, F.C. Lee, and D. Borojevich, “Stability
    margin monitoring for DC distributed power systems via
    perturbation approaches,” IEEE Trans. Power Electronics,
    vol. 18, no. 6, Nov. 2003, pp. 1254-1261.
    [7] C. Wang, and M.H. Nehrir, “Analytical approaches for
    optimal placement of distributed generation sources in
    power systems,” IEEE Trans. Power Systems, vol. 19, no.
    4, Nov. 2004, pp. 2068-2076.
    [8] N.S. Rau and Y.-H. Wan, “Optimum location of resources
    in distributed planning,” IEEE Trans. Power Systems, vol.
    9, no. 4, Nov. 1994, pp. 2014-2020.
    [9] G. Carpinelli, G. Celli, F. Pilo, and A. Russo, “Distributed
    generation siting and sizing under uncertainty,” Power
    Technical Proceedings, 2001 IEEE Porto, vol. 4, 10-13
    Sept. 2001, pp. 7.
    [10] T. Griffin, K. Tomsovic, D. Secrest, and A. Law,
    “Placement of dispersed generation systems for reduced
    losses,” Proceedings of the 33rd Annual Hawaii
    International Conference, 4-7 Jan. 2000, pp. 9.
    [11] N. Hadjsaid, J.F. Canard, and F. Dumas, “Dispersed
    generation impact on distribution networks,” IEEE
    Computer Applications in Power, vol. 12, no. 2, April
    1999 pp. 22-28.
    [12] H.L. Willis, “Analytical methods and rules of thumb for
    modeling DG-distribution interaction,” IEEE 2000 Power
    Engineering Society Summer Meeting, vol. 3, 16-20 July
    2000, pp. 1643-1644.
    [13] M. Saitou, T. Takeshita, and N. Matsui, “A novel control
    strategy for power active filter based on modal analysis of
    power distribution system,” 2003 Power Electronics
    Specialist Conference, PESC '03, vol. 4, 15-19 June 2003,
    pp. 1531-1536.
    [14] S.-I. Jang and K.-H. Kim, “An islanding detection method
    for distributed generations using voltage unbalance and
    total harmonic distortion of current,” IEEE Trans. Power
    Delivery, vol. 19, no. 2, April 2004, pp. 745-752.
    [15] A. Bhowmik, A. Maitra, S.M. Halpin, and J.E. Schatz,
    “Determination of allowable penetration levels of
    distributed generation resources based on harmonic limit
    considerations,” IEEE Trans. Power Delivery, vol. 18, no.
    2, April 2003, pp. 619-624.
    [16] A. Mansoor, W.M. Grady, P.T. Staats, R.S. Thallam, M.T.
    Doyle, and M.J. Samotyj, “Predicting the net harmonic
    currents produced by large numbers distributed
    single-phase computer load,” IEEE Trans. Power Delivery,
    vol. 10, no. 4, Oct. 1995, pp. 2001-2006.
    [17] D.G. Infield, P. Onions, A.D. Simmons, and G.A. Smith,
    “Power quality from multiple grid-connected single-phase
    inverters,” IEEE Trans. Power Delivery, vol. 19, no. 4, Oct.
    2004, pp. 1983-1989.
    [18] T. Hiyama, M.S.A.A. Hammam, and T.H. Ortmeyer,
    “Distribution system modeling with distributed harmonic
    sources,” IEEE Trans. Power Delivery, vol. 4, no. 2, April
    1989, pp. 1297-1304.
    [19] K.M.S. Islam and A.H. Samra, “Identification of harmonic
    sources in power distribution systems,” Proceedings of
    IEEE Southeastern, 'Engineering New Century', 12-14
    April 1997, pp. 301-303.
    [20] 林賜敬, 分散式發電系統之穩定度研究,國立成功大學
    電機工程學系碩士論文,中華民國93年6月。
    [21] 尤森驗, 分散式電源之成本效益評估,國立中山大學電
    機工程學系碩士論文,中華民國92年7月。
    [22] 鄭富雄,25kV 高壓電纜接頭之施工與事故分析及防範對
    策,私立中原大學電機工程學系碩士學位技術報告,中
    華民國92年6月。
    [23] 鄭煌仕, 考慮分散式電源之配電系統電壓與諧波分析,
    私立南台科技大學電機工程學系碩士論文,中華民國92
    年4月。
    [24] 林正宗,分散型電源對於常閉環路的保護電驛之衝擊分
    析,國立台灣大學電機工程研究所碩士論文,中華民國
    92年。
    [25] 賴俊男, 起重機轉換器之諧波分析與改善,私立逢甲大
    學電機工程學系碩士論文,中華民國93年6月。
    [26] 羅天賜,“諧波環境下的配電系統設計”, 電機月刊,第
    124 期,pp. 244-253,2001。
    [27] 江榮城, 電力品質實務( 一),台北:全華科技圖書股份
    有限公司,中華民國89年7月。
    [28] 黃秉鈞,我國再生能源的未來發展, 再生能源開發技術
    研討會,國立勤益技術學院電機工程系,中華民國90
    年3月。
    [29] 台灣經濟研究院, 台灣地區應用分散型電力可行性研
    究,2003。
    [30] A.R. Bergen, Power Systems Analysis, New York:
    Prentice-Hall, 1986.
    [31] J.J. Grainger and W.D. Stevenson, Jr., Power System
    Analysis, New York: McGraw-Hill, 1994.
    [32] Underwriters Laboratories Inc. http://www.ul.com/dge/.
    [33] http://www.developingpower.com/.
    [34] http://www.pep.com.cn/200406/ca411002.htm/.
    [35] M.A. El-Sharkawi and S.S. Huang, “Application of
    query-based learning to power system static security
    assessment,” Proceedings of the Second International
    Forum on Applications of Neural Networks to Power
    Systems, ANNPS '93, 19-22 April 1993, pp. 111-117.
    [36] 盧展南、劉承宗、王醴、鄧人豪、陳野正仁,風力發電
    對系統衝擊影響之研究,2003年台灣電力公司91年度研
    究專題計畫TPC-023-91-0003Z,中華民國92年7月。

    無法下載圖示 校內:2038-07-15公開
    校外:2038-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE