| 研究生: |
趙崇劭 Chao, Chung-Shao |
|---|---|
| 論文名稱: |
設計與分析具能量回收機制之可攜式壓電蠕動式微幫浦驅動電路 Design and Analysis of Charge-Recovery Driving Circuits for Portable Peristaltic Micropumps with Piezoelectric Actuators |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 蠕動式微幫浦 、壓電片驅動器 、並聯式升壓電路 、驅動電路 |
| 外文關鍵詞: | Peristaltic micropump, Piezoelectric actuators, Charge recovery, Driving circuit |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由微機電與微製程技術所製造的微幫浦已廣泛的應用於生醫領域。為了發展高精準度控制的藥物輸送系統,以壓電材料(PZT)為致動器的蠕動式微型幫浦最適合用來實現。在某些特殊的醫療用途上,病人需要攜帶著微幫浦系統且微幫浦系統需提供正常工作不短的時間,因此延長可攜式微幫浦系統的電力壽命是一重要的改善目標。利用壓電材料的電容性達到能量回收機制是最要效率的方式之一。本篇論文中提供了一種改良的驅動電路設計,除了驅動致動器的主要功能外也提供了能量回收的機制。改良式驅動電路的操作方式和設計方法將呈現在此研究中。此種改良式驅動電路驅動致動器的方式有別於傳統的方法,導致壓電材料作動方式的不同,透過實驗我們發現可藉由此改良的驅動電路得到額外增加的流率。為了深入探討流率受到新的驅動方式的影響,我們發展出一經驗函式,可由新驅動方式所產生的位移改變來解釋對於流率的影響。
Micropumps fabricated by micro-electro-mechanical systems (MEMS) technology are being continuously improved in biomedical applications. Among all kinds of pumps, piezoelectric peristaltic micropumps are most likely to be applied in implementations for the development of high precision drug delivery systems. The micropump can be used in portable devices, where power saving is a critical issue for almost all kinds of portable device. In this work, we consider the design of a power-saving technique for the lead-zirconate-titanate (PZT) micropump system, which allows mobile injection to reduce the power consumption under driving conditions. The modified driving circuits of piezoelectric micropumps are developed with charge recovery using energy storage capacitance. The modified driving circuits use the two-phase charging method whose time duration between two charges is discussed. We discovered that the pump obtains an extra 34%, 13% and 4.2% flow rate at 80 Vpp, 120 Vpp, and 160 Vpp, respectively. The experiential function is investigated to present the effect of time duration and the relationship between the flow rates and the displacement of PZT.
[1] Fair RB, Khlystov A, Srinivasan V, Pamula VK, Weaver KN (2004)Integrated chemical/biochemical sample collection, pre-concentration,and analysis on a digital microfluidic lab-on-a-chipplatform. Proc SPIE 5591:113–124
[2] Andersson H, Van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuator B Chem 92:315–325
[3] Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid 3:377–390
[4] Jang LS, Kan WH (2007) Peristaltic piezoelectric micropump system for biomedical applications. Biomed Microdevices 9: 619-626
[5] Van Lintel HTG, Van De Pol FCM, Bouwstra S (1988) Piezoelectric micropump based on micromachining of silicon. Sens Actuator 15:153–167
[6] Jang LS, Li YJ, Lin SJ, Hsu YC, Yao WS, Tsai MC, Hou CC (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9: 185-194
[7] Van De Pol FCM, van Lintel HTG, Elwenspoek M, Fluitman JHJ (1990) A thermopneumatic micropump based on micro-engineering techniques. Sens Actuator A 21:198–202
[8] Nguyen TT, Pham M, Goo NS (2008) Development of a peristaltic micropump for bio-medical applications based on mini LIPCA. J Bionic Eng 5:135–141
[9] Rapp R, Schomburg WK, Maas D, Schulz J, Stark W (1994) LIGA micropump for gases and liquids. Sens Actuator A 40:57–61
[10] Zengerle R, Ulrich J, Kluge S, Richter M, Richter A (1995) A bidirectional silicon micropump. Sens Actuator A 50:81–86
[11] Husband B, Bu M, Evans AGR, Melvin T, (2004) Investigation for the operation of an integrated peristaltic micropump. J MICROMECH MICROENG 14: S64-S69
[12] Lee DS, Ko JS, Kim YT (2004) Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance. Thin Solid Films 486: 285-290
[13] Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. SENSOR ACTUAT A-PHYS 21-23: 203-206
[14] Jang LS, Kan WH, Chen MK, Chou YM (2009) Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique. Microfluid Nanofluid. doi:10.1007/s10404-009-0416-7
[15] Husband B, Bu M, Apostolopoulos V, Melvin T, Evans AGR (2004) Novel actuation of an integrated peristaltic micropump. MICROELECTRON ENG 73-74: 858-863
[16] Campolo D, Sitti M, Fearing RS (2003) Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves. IEEE Trans Ultrason Ferroel Freq Control 50(3): 237-244
[17] Biancuzzi G, Lemke T, Woias P, Ruthmann O, Schrag HJ, Vodermayer B, Schmidc T, Goldschmidtboeing F (2009) Performance of piezoelectric micropumps actuated by charge recovery Procedia Chemistry 1: 698–701
[18] Hsu YC, Li JH (2007) Research on Plastic Peristaltic Micropumps with and without Diffuser Valves. 5th Conference on Precision Machinery and Manufacturing Technology-PMMT: 8-15
[19] Giral R, Martinez LS, Singer S (1999) Interleaved converters operation based on CMC. IEEE T POWER ELECTR 14: 643–652
[20] Lee PW, Lee YS, Cheng KW, Liu XC (2000) Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE T IND ELECTRON 47: 787-795