| 研究生: |
林蓁卉 Lin, Chen-Hui |
|---|---|
| 論文名稱: |
透過多模態實驗與機器學習評估專注與放鬆狀態 Evaluation of Concentration and Relaxation States through Multimodal Experiments and Machine Learning |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 腦波 、專注 、音樂 、機器學習 、特徵選擇 |
| 外文關鍵詞: | Electroencephalogram (EEG), Attention, Music, Machine Learning, Feature Selection |
| 相關次數: | 點閱:6 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代學習環境中,專注力的維持成為學生面臨的一大挑戰,尋找有效的方法來提升專注力,將有助於學生獲得更優秀的學習成果。而過去的研究表明,音樂,尤其是受試者喜愛的音樂,對提升專注力具有積極作用。然而,傳統的專注力評估方法大多缺乏足夠的客觀性和精確性。本研究以多模態實驗的方式,利用心理運動警覺性任務(PVT)和注意力網絡測試(ANT)這兩項行為測試,並結合音樂的干預,探討音樂對專注力的提升效果。PVT反應時間及ANT警覺效應分數結果皆發現音樂可以顯著提升專注程度(p=0.013/0.037)。在機器學習的算法當中,使用Fisher Score特徵選擇的演算法以進行專注力分析。在驗證機器學習的演算法時,使用一個開源的專注腦波資料庫做為訓練集、自採集數據做為測試集的準確率可以達到0.96。本研究不僅驗證音樂對專注力的提升效果,還將為教育領域及腦機介面的應用提供理論支持,特別是在專注力提升與學習效率的相關研究中。
In modern learning environments, maintaining attention has become a significant challenge for students. Finding effective methods to enhance concentration can greatly contribute to improved academic performance. Previous studies have shown that music—especially music preferred by the listener—can have a positive effect on attention enhancement. However, traditional methods for assessing attention often lack sufficient objectivity and precision.
This study adopts a multimodal experimental approach, combining two behavioral tasks—the Psychomotor Vigilance Task (PVT) and the Attention Network Test (ANT)—with music intervention to investigate the impact of music on attention. The results of PVT reaction time and ANT alerting effect scores indicate that music can significantly improve attentional performance (p = 0.013 / 0.037).
For attention analysis, this study employs machine learning algorithms using Fisher Score-based feature selection. In the evaluation of these algorithms, a public EEG dataset related to attention was used as the training set, while self-collected data served as the testing set, achieving an accuracy of 0.96.
This research not only validates the positive effect of music on attention but also provides theoretical support for applications in the fields of education and brain–computer interface (BCI), particularly in studies related to attention enhancement and learning efficiency.
Shao Xiaolin, Suwarsi, Pornman Inta, Asmarani Lathu Fajarina, Muflih, Listyana Natalia Retnaningsih, Damayanti Santi. (2023). The Relationship Between Learning Concentration and Understanding Level Through the Online Learning Process. Jurnal Keperawatan Respati Yogyakarta, 10(2), May 2023, 89 - 93.
Erwiza Erwiza, Sri Kartiko, Gimin Gimin. (2019). Factors Affecting the Concentration of Learning and Critical Thinking on Student Learning Achievement in Economic Subject. Journal of Educational Sciences, 3(2):205.
Fumiya Mori, Fatemeh Azadi Naghsh, Taro Tezuka. (2014). The effect of music on the level of mental concentration and its temporal change. CSEDU 2014 - Proceedings of the 6th International Conference on Computer Supported Education. 1. pp.34-42.
Luca Kiss, Karina J. Linnell. (2021). The effect of preferred background music on task-focus in sustained attention. Psychological Research, 2021 Sep;85(6):2313-2325.
Luca Kiss, Karina J. Linnell. (2024). The role of mood and arousal in the effect of background music on attentional state and performance during a sustained attention task. Scientific Reports, 14, 9485.
Çiğdem İnan Acı, Murat Kaya, Yuriy Mishchenko. (2019). Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods. Expert Systems with Applications, Volume 134, 2019, pp.153-166.
Chia-Ju Peng, Yi-Chun Chen, Chun-Chuan Chen, Shih-Jui Chen, Barthélemy Cagneau, Luc Chassagne. (2020). An EEG-Based Attentiveness Recognition System Using Hilbert–Huang Transform and Support Vector Machine. Journal of Medical and Biological Engineering. 40, pp.230–238.
Jinyoung Moon, Yongjin Kwon, Jongyoul Park, Wan Chul Yoon. (2019). Detecting user attention to video segments using interval EEG features. Expert Systems with Applications, Volume 115, 2019, pp.578-592.
David F. Dinges, John W. Powell . (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers, 17, pp.652–655.
Jin Fan, Bruce D McCandliss, Tobias Sommer, Amir Raz, Michael I Posner. (2002). Testing the Efficiency and Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14(3), pp.340-347.
Xiao-Cong Zhong, Qisong Wang, Dan Liu, Jing-Xiao Liao, Runze Yang, Sanhe Duan, Guohua Ding, Jinwei Sun. (2023). A deep domain adaptation framework with correlation alignment for EEG-based motor imagery classification. Computers in Biology and Medicine, Volume 163.
Yisi Liu, Zirui Lan, Jian Cui, Olga Sourina, Wolfgang Müller-Wittig. (2020). Inter-subject transfer learning for EEG-based mental fatigue recognition. Advanced Engineering Informatics, Volume 46.
Md. Maniruzzaman, Md. Al Mehedi Hasan, Nobuyoshi Asai, Jungpil Shin. (2023). Optimal Channels and Features Selection Based ADHD Detection From EEG Signal Using Statistical and Machine Learning Techniques. IEEE Access, vol. 11, pp.33570-33583.
Donald L. Schomer, Fernando H. Lopes da Silva. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincott Williams & Wilkins. ISBN 0-7817-5126-8.
Kenji Katahira, Yoichi Yamazaki, Chiaki Yamaoka, Hiroaki Ozaki, Sayaka Nakagawa, Noriko Nagata. (2018). EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task. Frontiers in Psychology, Volume 9.
Jahaziel Molina del Río, Miguel Angel Guevara, Marisela Hernández González, Rosa María Hidalgo Aguirre, Manuel Alejandro Cruz Aguilar. (2019). EEG correlation during the solving of simple and complex logical–mathematical problems. Cognitive, Affective, & Behavioral Neuroscience, 19, 1036–1046.
Li-Wei Ko, Oleksii Komarov, W David Hairston, Tzyy-Ping Jung, Chin-Teng Lin. (2017). Sustained Attention in Real Classroom Settings: An EEG Study. Frontiers in Human Neuroscience, Volume 11.
F.C. Donders. (1969). On the speed of mental processes. Acta Psychologica, Volume 30, Pages 412-431.
David Hill. (2025). Psychomotor Vigilance Task (PVT) (https://www.mathworks.com/matlabcentral/fileexchange/106625-psychomotor-vigilance-task-pvt), MATLAB Central File Exchange. Retrieved March 11, 2025.
Michael I. Posner. (1994). Attention: the mechanisms of consciousness. Proc Natl Acad Sci U S A, 91(16):7398-403.
Michael I. Posner, Steven E. Petersen. (1990). The attention system of the human brain. Annu Rev Neurosci, 13:25-42.
Yi-Feng Wang, Qian Cui, Feng Liu, Ya-Jun Huo, Feng-Mei Lu, Heng Chen, Hua-Fu Chen. (2014). A new method for computing attention network scores and relationships between attention networks. PLoS One, 9(3):e89733.
Quanquan Gu, Zhenhui Li, Jiawei Han. (2012). Generalized Fisher Score for Feature Selection. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011.
Albasri, Ahmed (2019). “EEG dataset of Fusion relaxation and concentration moods”, Mendeley Data, V1.
Michael I. Posner. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129:193-9.
Shulan Yu, Xinran Chen. (2024). The Effect of Musical Environments on Designers' Attention: Persistent Music Listening Interferes with Attention. Behavioral Sciences (Basel), 14(3):216.
Supratim Ray, Ernst Niebur, Steven S. Hsiao, Alon Sinai, Nathan E. Crone. (2008). High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention. Clin Neurophysio, 119(1):116-33.
Ole Jensen, Jochen Kaiser, Jean-Philippe Lachaux. (2007). Human gamma-frequency oscillations associated with attention and memory, Trends in Neurosciences, Volume 30, Issue 7, Pages 317-324.
Seokbeen Lim, Mina Yeo, Gilwon Yoon. (2019). Comparison between Concentration and Immersion Based on EEG Analysis. Sensors (Basel), 19(7):1669.
Andreas K Engel, Pascal Fries. (2010). Beta-band oscillations—signalling the status quo?, Current Opinion in Neurobiology, Volume 20, Issue 2, Pages 156-165.
Nicholas R Cooper, Rodney J Croft, Samuel J.J Dominey, Adrian P Burgess, John H Gruzelier. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses, International Journal of Psychophysiology, Volume 47, Issue 1, Pages 65-74.
Abeer Al-Nafjan, Mashael Aldayel. (2022). Predict Students’ Attention in Online Learning Using EEG Data. Sustainability. 14(11):6553.
Raghavendra Ganiga, Yonggang Kim, Raj Tulluri, Wooyeol Choi. (2023). Modeling EEG Signals for Mental Confusion Using DNN and LSTM With Custom Attention Layer. IEEE Access, vol. 11, pp. 134663-134676.
Dong-Hwa Jeong, Jaeseung Jeong. (2020). In-Ear EEG Based Attention State Classification Using Echo State Network. Brain Sciences, 10(6):321.
Shingchern D. You. (2021). Classification of relaxation and concentration mental states with EEG. Information (Switzerland), 12(5), Article 187.