| 研究生: |
官威呈 Guan, Wei-Cheng |
|---|---|
| 論文名稱: |
結合 Mason Model 與 MATLAB 模擬 FBAR 縱向與橫向混合模態之特性分析 Analysis of Hybrid Longitudinal and Shear Modes in FBAR Using Mason Model and MATLAB-Based Simulation |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | FBAR 、Mason model 、程式化 、縱向模態 、橫向模態 |
| 外文關鍵詞: | FBAR, Mason model, Programming Implementation, longitudinal mode, shear mode |
| 相關次數: | 點閱:7 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著第五代行動通訊(5G)與未來第六代通訊技術(6G)的快速發展,無線系統對於高頻、大頻寬及小型化的射頻濾波器元件提出更高要求。薄膜體聲波共振器(Film Bulk Acoustic Resonator, FBAR)因具有高品質因數、低插入損耗與優異的製程整合性,成為目前應用於高頻通訊模組中的重要濾波解決方案。然而,傳統FBAR模擬方法大多基於Mason等效電路模型,並僅考慮縱向模態(longitudinal mode)之響應,忽略剪切模態(shear mode)在高頻或多層結構下所產生的影響,容易導致模擬準確性不足。
本研究針對此一限制,提出一套整合縱向與剪切模態的改良型Mason模型,並以MATLAB實作模擬流程。所建構之模擬架構可處理多層結構、多材料與多模態的物理參數設定,並透過Christoffel方程式計算材料中聲波的傳播速度與極化方向,再依據各層物理性質與模態類型建立對應的聲學阻抗與電聲耦合元件,最後以等效電路方式組裝結構並進行頻率響應模擬。程式亦提供模式選擇與結果視覺化功能,便於辨識不同模態之阻抗特性。
在模擬驗證方面,本研究選用單層(AlN)、三層(Al/AlN/Al)與四層(Al/ZnO/Al/SiO₂)等不同結構進行分析,並與文獻中之模擬數據與結果進行比較。結果顯示,改良模型在縱向模態的諧振頻率與阻抗變化趨勢上,與既有文獻具高度一致性,證實其模擬準確性與實用性。此外,模型亦能呈現剪切模態於特定結構下的響應行為,顯示其對於模態辨識與結構特性分析具有良好輔助效果。
本模擬系統具備高度模組化與可擴充性,適用於高頻通訊元件之設計、參數掃描與性能分析,並可作為多模態聲波元件模擬與結構優化之有效分析工具。
Film Bulk Acoustic Resonators (FBARs) are essential components in modern RF modules due to their high Q factor and compact size. Traditional Mason models primarily focus on longitudinal modes and often overlook shear modes, which are increasingly relevant in multilayer structures. This thesis proposes an enhanced Mason model implemented in MATLAB to analyze hybrid longitudinal and shear modes in FBAR devices. The model incorporates acoustic impedance calculations, Christoffel-based wave velocity analysis, and multilayer circuit assembly to simulate input impedance behavior. Through case studies of single-layer, three-layer, and four-layer FBAR structures, the simulation results demonstrate consistency with previously published data, particularly in longitudinal mode analysis. The proposed framework serves as a versatile simulation tool that facilitates the interpretation of complex modal behaviors and assists in the preliminary evaluation of device configurations.
[1] F. Kiouach, B. Aghoutane, and M. El Ghzaoui, "Novel microstrip bandpass filter for 5G mm-wave wireless communications," e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, p. 100357, 2023.
[2] K. Yang et al., "SV-SAW RF filters based on low-cost 128° Y LiNbO3/SiO2/poly-Si/Si substrate for 6G cmWave wireless communications," Microsystems & Nanoengineering, vol. 11, no. 1, p. 79, 2025.
[3] C. C. Ruppel, "Acoustic wave filter technology–a review," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 9, pp. 1390-1400, 2017.
[4] T. Yang et al., "5.5 GHz film bulk acoustic wave filters using thin film transfer process for WLAN applications," Microsystems & Nanoengineering, vol. 10, no. 1, p. 174, 2024.
[5] A. Kozyrev, A. Mikhailov, S. Ptashnik, P. K. Petrov, and N. Alford, "Selective normal mode excitation in multilayer thin film bulk acoustic wave resonators," Applied Physics Letters, vol. 105, no. 16, 2014.
[6] R. Y. Vidana Morales, S. Ortega Cisneros, J. R. Camacho Perez, F. Sandoval Ibarra, and R. Casas Carrillo, "3D simulation-based acoustic wave resonator analysis and validation using novel finite element method software," Sensors, vol. 21, no. 8, p. 2715, 2021.
[7] N. Nor et al., "The influence of design parameters on the performance of FBAR in 10–14 GHz," in EPJ Web of Conferences, 2017, vol. 162: EDP Sciences, p. 01041.
[8] T. Jamneala, P. Bradley, A. Shirakawa, R. K. Thalhammer, and R. Ruby, "An investigation of lateral modes in FBAR resonators," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 5, pp. 778-789, 2016.
[9] Y. Zhou et al., "Investigation of film bulk acoustic resonators for sensing applications in liquid environment," Applied Physics Letters, vol. 121, no. 21, 2022.
[10] Y. Zhang and D. Chen, Multilayer integrated film bulk acoustic resonators. Springer Science & Business Media, 2012.
[11] Y. Kumar, K. Rangra, and R. Agarwal, "Design and simulation of FBAR with different electrodes material configuration," International Journal of Engineering Trends and Technology, vol. 28, no. 6, p. 294, 2015.
[12] H. Lu et al., "Recent Advances in AlN-Based acoustic wave resonators," Micromachines, vol. 16, no. 2, p. 205, 2025.
[13] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. Artech House, 1988.
[14] L. Xin, L. Mengwei, and F. Yanlu, "Bulk acoustic resonator devices using ZnO-based film and back cavity," European Journal of Electrical Engineering, vol. 19, no. 1-2, p. 111, 2017.
[15] L. Arapan, "Thin film plate acoustic resonators for frequency control and sensing applications," Acta Universitatis Upsaliensis, 2012.
[16] J. A. V. Tirado, "Bulk acoustic wave resonators and their application to microwave devices," Universitat Autònoma de Barcelona, 2010.
[17] J. Larson, S. Gilbert, and B. Xu, "PZT material properties at UHF and microwave frequencies derived from FBAR measurements," IEEE Ultrasonics Symposium, 2004, vol. 1, pp. 173-177, 2004-08-23 2004, doi: 10.1109/ULTSYM.2004.1417696.
[18] Y. Wang et al., "Effects of electric bias on different Sc-doped AlN-based film bulk acoustic resonators," Electronics, vol. 11, no. 14, p. 2167, 2022.
[19] Q. Chen, F. Li, H. Cheng, and Q.-M. Wang, "Characteristics of dual mode AlN thin film bulk acoustic wave resonators," in 2008 IEEE International Frequency Control Symposium, 2008: IEEE, pp. 609-614.
[20] W. Pang, H. Zhang, H. Yu, and E. S. Kim, "Analytical and experimental study on second harmonic response of FBAR for oscillator applications above 2GHz," in IEEE Ultrasonics Symposium, 2005., 2005, vol. 4: IEEE, pp. 2136-2139.