簡易檢索 / 詳目顯示

研究生: 余春賢
Yu, Chun-xian
論文名稱: 分散式發電於電力系統之衝擊
Impacts of Distributed Generation on Power Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 160
中文關鍵詞: 配電系統分散式發電責任分界點
外文關鍵詞: point of common coupling, distribution system, distributed generation
相關次數: 點閱:99下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討分散式電源於配電系統中的裝置點,經由目標函數以及系統損失來決定分散式電源在系統中之最佳安置點。文中利用電力系統之模擬軟體CYME來分析分散式發電系統與市電系統併聯運轉時,可能發生動態與穩態特性影響。本文以「IEEE 六個匯流排測試系統」和「實際台電系統」,探討其之間相互影響。在系統動態研究方面,本論文針對單台感應機分析故障發生時,對系統產生衝擊及影響。在系統穩態分析方面,本論文針對系統效率、責任分界點之電壓變動率、投入負載於系統、饋線上有無串聯電抗器以及改變變壓器分接頭電壓等級對系統特性之影響,做一併研究探討。
    本文除了可提供分散式電源業者做為參考依據外,也可讓電力公司在執行配電系統運轉規劃時,改善供電品質與可靠度。

    In this thesis, an objective function and the concept of system electric loss are first proposed to determine the optimal location to place a distributed generation (DG) source in a connected distribution system. This thesis employs a power system simulation program, CYME, to analyze dynamic and steady-state performance of dispersed generation systems connecting to an utility grid. The studied system contains an IEEE 6-bus test system and a practical Taiwan Power System. Dynamic characteristic of the studied induction generator under faulted condition are also examined. The steady-state results of the studied system under system efficiency, the percentage of voltage variation of point of common coupling (PCC), the system with and without loads, with and without series reactor in feeders, and changing the voltage level of tap changer of transformer are explored.
    The results of the thesis can provide the planning and operating strategies for the dispersed generation systems (DGS) manufacturers. Furthermore, the utilities can improve the power quality and the reliability of the distribution.

    目錄 頁次 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 X 符號說明 XIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-3 內容大綱 8 1-4 本論文貢獻 9 第二章 系統模型與CYME電力軟體之簡介 10 2-1 負載潮流之基本原理 10 2-1-1 變壓器之等效模型 11 2-1-2 傳輸線之等效模型 12 2-2 電力傳輸之原理 14 2-3 電力系統匯流排之分類 16 2-4 求解電力潮流方程式 18 2-5 CYME電力系統分析軟體簡介 23 2-6 CYME電力軟體之建構流程 24 2-7 本章結論 29 第三章 分散式發電之介紹 30 3-1 分散式發電之定義 30 3-2 分散式發電之優勢 30 3-2-1 分散式系統更容易找到裝置點 30 3-2-2 減少成本及損失 30 3-2-3 技術的進步使發電效率大幅提高 31 3-2-4 改善電力品質及可靠度 31 3-2-5 減少環境之污染 32 3-2-6 偏遠地區之負載需求 32 3-3 分散式發電之種類 33 3-3-1 依照不同的發電能源 33 3-3-2 依照不同的併聯方式 34 3-4 分散式發電對配電系統之衝擊影響 35 3-4-1 系統電氣之損失 35 3-4-2 電壓變動 35 3-4-3 逆送電力潮流 36 3-5 本章結論 37 第四章 分散式電源於配電系統之負載潮流分析 38 4-1 前言 38 4-2 分散式電源最佳安置點之選定及目標函數 38 4-2-1 分散式電源最佳安置點之模擬 41 4-2-2 分散式電源最佳安置點之結果與分析 45 4-3 負載潮流分析結果 45 4-3-1 改變分散式電源發電量之負載潮流分析 45 4-3-2 改變功率因數之負載潮流分析 55 4-3-3 多部分散式電源於最佳安置點之負載潮流分析 68 4-3-4 電壓崩潰指標 70 4-4 本章結論 73 第五章 分散式電源於配電系統之動態模擬與分析 74 5-1 前言 74 5-2 感應發電機併入市電運轉之故障特性分析 74 5-2-1 感應發電機之三相短路故障分析 74 5-2-2 市電端發生三相短路故障分析 80 5-2-3 市電端發生單線接地故障分析 85 第六章 實際典型風力發電系統衝擊分析 90 6-1 前言 90 6-2 主變壓器分接頭改變之穩態分析 90 6-3 串聯電抗器容量改變之穩態分析 105 6-4 合併主變壓器的分接頭及串聯電抗器之穩態分析 120 6-5 投入負載於發電系統之穩態分析 133 6-6 本章結論 147 第七章 結論與未來研究方向 148 7-1 結論 148 7-2 未來研究方向 149 參考文獻 150 附錄A:IEEE六個匯流排環狀型配電系統資料 154 附錄B:再生能源發電系統併聯技術要點 155 作者簡介 158 中、英文自傳 160

    [1] M. Papadopoulos, P. Malatestas, and N. Hatziargyriou, “Simulation and analysis of small and medium size power systems containing wind turbines,” IEEE Transactions on Power Systems, vol. 6, no. 4, November 1991, pp. 1453-1458.
    [2] A. E. Feijoo and J. Cidras, “Modeling of wind farms in the load flow analysis,” IEEE Transactions on Power Systems, vol. 15, no. 1, February 2000, pp. 110-115.
    [3] M. Alshamali and B. Fox, “Unsymmetrical faults and their potential for nuisance tripping of embedded generators,” IEE Seventh International Conference on Power System Protection, vol. 1, no. 479, April 2001, pp. 238-241.
    [4] R. C. Dugan, M. F. Granaghan, S. Santoso, and H.W. Beaty, Electrical Power Systems Quality, New York: McGraw-Hill, 2003.
    [5] A. P. Agalgaonkar, S. V. Kulkarni, and S. A. Khaparde, “Impact of wind generation on losses and voltage profile in a distribution system,” IEEE Transactions on Power Systems, vol. 2, no. 2, October 2003, pp. 775-779.
    [6] T. Niknam, A. M. Ranjbar, and A. R. Shirani, “Impact of distributed generation Volt/VAR control in distribution networks,” in Proc. International Joint Conference on Power System, Electric Power Application, vol. 3, no. 3, June 2003, pp. 431-438.
    [7] K. J. P. Macken, M. H. J. Bollen, and R. J. M. Belmans, “Mitigation of voltage dips through distributed generation systems,” IEEE Transactions on Industry Applications, vol. 40, no. 6, November 2004, pp. 1686-1693.
    [8] S. Kelouwani and K. Agbossou, “Nonlinear model identification of wind turbine with a neural network,” IEEE Transactions on Energy Conversion, vol. 19, no. 3, September 2004, pp. 607-612.
    [9] C. Wang and M. H. Nehrir, “Analytical approaches for optimal placement of distributed generation sources in power systems,” IEEE Transactions on Energy Conversion, vol. 3, no. 1, June 2005, pp. 12-16.
    [10] T. Senjyu, T. Nakaji, K. Uezato, and T. Funabashi, “A hybrid power system using alternative energy facilities in isolated island,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, June 2005, pp. 406-414.
    [11] A. M. Knight and G. E. Peters, “Simple wind energy controller for an expanded operating range,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, June 2005, pp. 459-466.
    [12] K. S. Kook, K. J. Mckenzie, and Y. Liu, “A study on applications of energy storage for the wind power operation in power systems,” IEEE Power Engineering Society General Meeting, vol. 19, no. 4, June 2006, pp. 18-22.
    [13] V. H. M. Quezada, J. R. Abbada, and T. G. S. Roman, “Assessment of energy distribution losses for increasing penetration of distributed generation,” IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006, pp. 533-540.
    [14] E. K. Walid, Y. G. Hegazy, and M. M. A. Salama, “Investigating distributed generation systems performance using Monte Carlo simulation,” IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006, pp. 524-532.
    [15] J. A. Pecas, C. L. Moreira, and A. G. Madureira, “Defining control strategies for microgrids islanded operation,” IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006, pp. 916-924.
    [16] T. M. L. Assis, G. N. Taranto, D. M. Falc, and A. Manzoni, “Long and short-term dynamic simulations in distribution networks with the presence of distributed generation,” IEEE Power Engineering Society General Meeting, vol. 2, no. 2, June 2006, pp. 18-24.
    [17] R. A. Prata, “Impact of distributed generation connection with distribution grids,” IEEE Power Engineering Society General Meeting, vol. 1, no. 2, June 2006, pp. 8-15.
    [18] L. F. Ochoa, P. Feltrin, and G. P. Harrison, “Evaluating distributed generation impacts with a multiobjective index,” IEEE Transactions on Power Delivery, vol. 21, no. 3, July 2006, pp. 1452-1458.
    [19] S. Seantoso and Z. Zhou, “Induction machine test case for the 34-bus test feeder,” IEEE Power Engineering Society General Meeting, vol. 10, no. 2, June 2006, pp. 10-11.
    [20] A. Keane and M. O’Malley, “Impact of distributed generation capacity on losses,” IEEE Power Engineering Society General Meeting, vol. 10, no. 2, June 2006, pp. 30-37.
    [21] F. Giraud and Z. M. Salameh, “Steady-state performance of a grid connected rooftop hybrid wind-photovoltaic power system with battery storage,” IEEE Transactions on Energy Conversion, vol. 16, no. 1, March 2006, pp. 18-22.
    [22] 任玉屏,步階變化負載對電力系統動態影響之分析,國立成功大學電機工程研究所碩士論文,民國88年6月。
    [23] 游敏育,分散式發電系統之最佳安置、侵入等級與諧波放大之研究,國立成功大學電機工程研究所碩士論文,民國94年6月。
    [24] 張哲豪,結合網際網路與可程式控制器於混合發電/儲能系統之遠端即時監控,國立成功大學電機工程研究所碩士論文,民國95年6月。
    [25] 盧展南、劉承宗、王醴、鄧人豪、陳野正仁,風力發電對系統衝擊影響之研究,91年台灣電力公司委託研究計畫,民國92年6月。
    [26] 陳清山、羅天賜,風力發電於配電系統之併聯研究,中華民國第二十五屆電力工程研討會,國立成功大學,第278-283頁,民國93年11月。
    [27] 簡昭群,電工法規,文笙書局股份有限公司,民國94年。
    [28] 陳在相,電力系統分析,台灣東華書局股份有限公司,民國91年。
    [29] 劉康立,電力系統分析,曉園出版社有限公司,民國74年。
    [30] 黃聰亮,電力系統解析,超級科技圖書股份有限公司,民國92年。
    [31] http://pemclab.cn.nctu.edu.tw/W3news
    [32] http://www.cyme.com
    [33] CYME, Power Engineering Software Solutions, May 2006.
    [34] 李奕德,汽電共生系統解聯電驛設定與卸載策略,國立台灣科技大學電機工程研究所碩士論文,民國88年6月。

    下載圖示 校內:2009-08-08公開
    校外:2010-08-08公開
    QR CODE