| 研究生: |
江孟庭 Juiang, Meng-Ting |
|---|---|
| 論文名稱: |
探討串聯電阻對於氮化銦鎵系列太陽能電池之影響 Effect of Series Resistance on InGaN/Sapphire-based Solar Cells |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 三五族化合物半導體 、氮化鎵銦 、氮化鋁鎵銦 、太陽能電池 、晶圓鍵結 、串聯電阻 |
| 外文關鍵詞: | Solar cell, InGaN, AlGaN, Wafer bonding, Series resistance |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對三五族化合物半導體氮化銦鎵(InGaN)系列太陽能電池元件製作與分析。傳統氮化鎵光電元件由於成長在絕緣的藍寶石基板上,使得元件正負電極須製作於同一平面;然而氮化銦鎵材料缺陷密度高達 108 ~1012 cm-2,光載子傳輸時容易被材料缺陷所捕捉進而影響元件操作特性。本論文利用晶圓鍵結(wafer bonding)方式將氮化銦鎵磊晶層從絕緣的藍寶石轉置到高導電率的矽基板而形成垂直式載子傳輸方向之電極結構。光載子在空乏區分離後傳輸至電極的路徑大幅縮短,使得載子傳輸時被材料缺陷所捕捉的數量因而降低,故可有效提升光電流。垂直式電極結構相較於傳統水平結構有較佳的元件操作表現,其光電流提升76 %。垂直結構之太陽能電池各項參數JSC、VOC、FF以及 η 分別為1.32 mA/cm2、2.38 V、71.4 %以及2.24 %。此外,本論文於電池元件磊晶層中額外置入AlGaN與n-InGaN結構,並探討串聯電阻對於太陽能電池之特性研究。
In this study we focused on fabricating and analyzing the InGaN-based photovoltaic (PV) devices. Conventionally, electrodes of GaN-based optoelectrical devices were fabricated laterally on the same side due to non-conducting sapphire substrates, which were much different from conducting Si or GaAs substrates. Because of the high threading dislocation density of InGaN/sapphire materials (about 108 ~ 1012 cm-2), photocarriers could be easily captured by trap states. In our work, the InGaN epitaxy was transferred via wafer bonding techniques from sapphire to Si substrates. The transit distance of photocarriers separated from the depletion region to the external circuit could be greatly shortened. The photocarriers captured by trap states could be decreased and hence the increased photocurrent. Compared with the conventionally lateral-type fabrication, devices in vertical-type electrodes exhibited better solar cell performance with enhanced JSC, VOC, FF and η of 1.32 mA/cm2, 2.38 V, 71.4 % and 2.24 %, respectively. In addition, the InGaN PV devices with another AlGaN or n-InGaN insertion layers were also studied. Band diagram simulation showed that 2-dimentional electron gas (2DEG) could be formed to lower down series resistance so that enhanced the power conversion efficiency of InGaN PV cells.
第一章 序論
【1】 J. Nelson, “The Physics of Solar Cell,” Imperial College Press, 2003.
【2】 C. C. Yang, “Fabrications and Characterisrics of Ⅲ/Ⅴ Solar Cells,” 國立成功大學碩士論文,2007.
【3】 R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” Proc. 24th Eur. PVSEC, pp. 55-61, 2009.
【4】 V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J.Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B, vol. 229, no. 3, pp. R1-R3, 2002.
【5】 J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
【6】 D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, no. 5, pp. 676-677, 1954.
【7】 D. Jenny, J. Loferski, and P. Rappaport, “Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion,” Phys. Rev. Lett., vol.101, no.3, pp. 1208-1209, 1956.
【8】 S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, pp. 955-961, 1998.
【9】 N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, no. 13, pp. 132505, 2009.
【10】 O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. vol. 91, no.13, pp. 132117, 2007.
【11】 C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap ,” Appl. Phys. Lett. vol.93, no.14, pp. 143502, 2008.
【12】 R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, ”Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett. vol. 30, no.7, pp. 724-726, 2009.
【13】 R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes,” IEEE Electron Device Lett. vol.31, no.6, pp.585-587, 2010.
【14】 O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,” Proc. the 31st IEEE PVSC, pp.37-42, 2005.
【15】 R. Dahal, B. Pantha, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. vol.94, no.6, pp. 063505, 2009.
【16】 R. Dahal, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett. vol.97, no. 7, pp. 073115, 2010.
【17】 C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optics Express, vol. 19, no. S4, pp. A695-700, 2011.
【18】 J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. vol. 30, no.3, pp. 225-227, 2009.
【19】 C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett. vol. 97, no.2, pp. 021113, 2010.
【20】 C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Y. H. Yeh X. W. Liang, and W. C. Lai, “Improved power conversion efficiency of InGaN photovoltaic devices grown on patterned sapphire substrates,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 536-538, 2011.
第二章 原理
【1】J. Nelson, “The Physics of Solar Cell,” Imperial College Press, London, 2003.
【2】S. M. Sze, “Physics of Semiconductor Devices,” Third Edition, WILEY, New York, 2000.
【3】A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering,” Wiley, England, 2002.
【4】D. K. Schroder, “Semiconductor Material and Device Characterization,” Third Edition, WILEY, Arizona State University, Canada, 2005.
【5】Bird R, Hulstrom R, Riordan C, “Solar Cells,” vol. 14, no. 2, pp. 193- 195, 1985.
【6】“Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight,” American Society for Testing and Materials Committee, E948-95.
【7】M. S. Haung, “Improved Conversion Efficiency of InGaN/Sapphire- based Solar Cells,” 國立成功大學碩士論文, 2010.
第三章 實驗製程步驟
【1】 W. S. Wong, N. W. Cheung and M. Kneissl, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, no. 10, pp. 1360-1362, 1999.
【2】C. F. Chu, F. I. Lai and J. T. Chu, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” Appl. Phys. Lett., vol. 95, no. 8, pp. 3916-3921, 2004.
第四章 實驗結果與分析討論
【1】 S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4188-4190, 1996.
【2】 S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
【3】 S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode,” The Complete Story, Springer, 2000.
【4】 Jenny Nelson, “Physics of Solar Cells,” Imperial College Press, 2003.
【5】 W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, no. 10, pp. 1360-1362, 1999.
【6】 Amy Hanlon, P. Morgan Pattison, John F. Kaeding, Rajat Sharma, Paul Fini and Shuji Nakamura, “292nm AlGaN Single-Quantum Well Light Emitting Diodes Grown on Transparent AlN Base,” J. J. Appl. Phys., vol.42, no. 6B, pp. L628-L630,2003.
【7】 M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A. D. Bykhovski, “Piezoelectric doping in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 75, no. 18, pp. 2806-2808, 1999.
【8】 Ambacher, B. foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334- 334, 2000.
第五章 結論與未來規劃
【1】 M. K. Lee, C. L. Ho, and P. C. Chen, “Light Extraction Efficiency Enhancement of GaN Blue LED by Liquid-Phase-Deposited ZnO Rods,” IEEE Photonics Technology Letters, vol. 20, No. 4, 2008.
【2】 M. H. Huang, S. Mao and H. Feick, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, vol. 292, no. 5523, pp. 1897-1899, 2001.
【3】 W. I. Park, G. C. Yi and J. W. Kim, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett., vol. 82, no. 24, pp. 3358-3360, 2003.
【4】 Minemoto T, Negami T, Nishiwaki S, Takakura H and Hamakawa Y, “Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering,” Thin Solid Films, vol. 372, no. 1-2, pp. 173-176, 2000.
【5】 A. K. Sharma, J. Narayen and J. F. Muth, “Optical and Structural properties of epitaxial MgXZn1-XO Alloys,” Appl. Phys. Lett., vol. 75, no. 21, pp. 3327-3329, 1999.
【6】 H. Q. Le and S. J. Chuaa, Y. W. Koh and K. P. Loh, “Growth of single crystal ZnO nanorods on GaN using an aqueous solution method,” Appl. Phys. Lett., vol. 87, no. 10, pp. 1908-1910, 2005.