簡易檢索 / 詳目顯示

研究生: 詹亭軾
Zhan, Ting-Shih
論文名稱: 橘紅色鹵化鋁酸鹽類螢光粉之合成與高演色性白光發光二極體新型封裝技術探討及開發
The Synthesis of Orange Chlorinate Aluminate Phosphors and Development of Novel Package Technology in White Light-Emitting Diodes with High CRI Values
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 螢光粉鹵化鋁酸鹽白光LED螢光粉封裝技術
外文關鍵詞: Phosphor, Chlorinate Aluminate, WLED, Phosphor package technology
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了製作出高演色性(Color rendering index, CRI)與高均勻度之白色發光二極體(Light-emitting diode, LED),於本研究中使用近紫外(Near-ultra violet, NUV)之LED(NUV-LED)與橘紅色之Sr3(1-x)Al2O5Cl2:3xEu2+和本實驗室合成之藍綠色Ba1-xZrSi3O9:xEu2+螢光粉合成出白光,其中Sr3(1-x)Al2O5Cl2:3xEu2+透過以離子半徑較小之Ca2+取代Sr2+離子的方式改變成Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+,使其放射光譜紅移,在y = 0.12時,於397 nm激發之下,放射光譜之波峰由原本之620 nm移動至638 nm,使其能夠進一步補償於螢光粉封裝白光 LED (Phosphor converted white light-emitting diode, pc-WLED)中容易缺乏的紅光波段,提高其CRI值。
    pc-WLED之封裝包含了許多控制參數,故本實驗先以商用螢光粉進行封裝,分析各項參數對出光特性之影響,發現於傳統封裝中,固定特定曲率與相同色度座標之條件下,低螢光粉濃度封裝相比於高螢光粉濃度封裝之pc-WLED,光強度略有提升(1.21 %),且各角度之CCT標準差值較低(低濃度封裝:15.04%,高濃度封裝:26.64%),表示其發光色度較為均勻,並於前述之結論下開發出新型的圓臺式封裝方式,進一步提高各項光特性,與低濃度傳統式封裝之pc-WLED相比,其光強度提升了8.33%,各角度光強度之標準差由傳統封裝之35.359降低至19.4947 %,CCT之標準差更是降低至4.308%。
    Sr3(1-x)Al2O5Cl2:3xEu2+與Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+各別使用於LED封裝時,CRI分別能夠到達73.785與76.23,配合Ba1-xZrSi3O9:xEu2+藍綠色螢光粉後則分別能達到CRI 90.012與92.297,且結合圓臺式封裝後,其光強度與CRI之各角度標準差只有18.81 %和1.1445 %,代表其色度均勻性極佳,相較於傳統式封裝,圓臺式封裝更適合應用於照明燈源。

    In order to fabricate white light-emitting diodes (WLEDs) with high color rendering index (CRI) and high chroma uniformity, orange phosphor Sr3(1-x)Al2O5Cl2:3xEu2+ and blue-green phosphor Ba1-xZrSi3O9:xEu2+ were chosen to integrate with near-ultra violet(NUV)-LED to emit white light. To compensate the lack of long wavelength in common WLEDs, Ca2+ ions with smaller ionic radius (99 pm) were added in Sr3(1-x)Al2O5Cl2:3xEu2+ to replace the Sr2+ ions that have larger ionic radius (113 pm) to redshift the emission spectrum. When the y value in the Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+ increases from 0 to 0.12, the peak of emission under an excitaion of 397 nm shifts from 620 nm to 638 nm, which makes its spectrum close to red light.
    There are lots of control parameters in the conventional packaging of phosphor converted-WLED (pc-WLED). To get better optical properties, we investigated the influence of these parameters, and found that the pc-WLEDs with lower phosphor concentration (Y14.2%/R1%) would have slight increase (1.21 %) in intensity than pc-WLEDs with higher phosphor concentration (Y20.42%/R1.4%). Furthermore, the standard deviation (SD) in percentage of CCT of 19 different view angle (0o to 180o, 10o/step) of pcWLEDs with lower phosphor concentration (15.04 %) is lower than those with higher phosphor concentration (26.64 %), which means a better chromatic uniformity.
    Based on the results above, a new packaging method has been developed, a frustum-shaped mass phosphor-gel was coated on LED chip with extremely low phosphor concentration of about one seventh of conventional packaging way. The light intensity of pc-WLEDs with frustum-shaped mass phosphor-gel is higher than those with conventional package (with an improvement of 8.33%). Also the SD (%) of light intensity of 19 different view angle (0o to 180o, 10o/step) of pcWLEDs with frustum-shaped phosphor-gel is much lower than those with conventional package, which were 19.4947 and 35.359 %, respectively, and the SD (%) of CCT of pcWLEDs with frustum-shaped phosphor-gel even reduced to 4.308%.
    Phosphor-gels of Sr3(1-x)Al2O5Cl2:3xEu2+and Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+ were coated on LEDs individually, the CCT of which were 73.785 and 76.23, respectively. With the addition ofBa1-xZrSi3O9:xEu2+ phosphor, CCT of pc-WLEDs with Sr3(1-x)Al2O5Cl2:3xEu2+ and Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+could reach a value of 90.012 and 92.297 individually.
    Combined with the frustum-shaped package, SD (%) of intensity and CCT of pc-WLED fabricated withSr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+ and Ba1-xZrSi3O9:xEu2+phosphor were 18.81% and 1.1445%, which means an extremely good intensity and chromatic uniformity.

    目錄 第一章緒論 1 1-1前言 1 1-2 研究動機與目的 2 1-3論文架構 4 第二章理論基礎與文獻回顧 5 2-1螢光粉之介紹 5 2-1-1螢光體發光原理與過程 7 2-1-2螢光體性質 14 2-1-3發光中心之種類與原理 15 2-1-4濃度淬滅理論 16 2-2螢光材料之組成與設計[33] 17 2-2-1 主體晶格之選擇 17 2-2-2 活化劑之選擇 18 2-2-3 抑制劑之選擇 19 2-3稀土元素 20 2-3-1 稀土元素之電子結構 20 2-3-2 稀土元素之電子結構 20 2-4 固態反應法[6, 36] 22 2-5色彩學 23 2-5-1 色度座標 (Commission International deI’Eclairage, CIE) 23 2-5-2 色溫與相對色溫(correlated color temperature, CCT) 24 2-5-3演色性指數(color rendering index, CRI) 26 2-5-4光通量[38] 26 2-6文獻回顧 29 2-6-1 Sr3Al2O5Cl2螢光粉之文獻回顧 29 2-6-2有關螢光粉封裝近年之文獻回顧 31 第三章實驗步驟與儀器原理 33 3-1 前言 33 3-2 實驗步驟 34 3-2-1螢光粉的燒製 34 3-2-2白光LED之製作 35 3-2-3使用Sr3(1-x)Al2O5Cl2:3xEu2+/Sr3(1-x-y)Ca3yAl2O5Cl2:Eu2+和實驗室自製之螢光粉BaZrSi3O9:Eu2+,用於傳統及圓臺式封裝,比較其發光數據 38 3-3量測系統及特性分析 38 3-3-1量測儀器設備 38 3-3-2特性分析 39 第四章結果與討論 44 4-1以固態反應法燒製之Sr3(1-x)Al2O5Cl2:3xEu2+及Sr3(1-x-y)Ca3yAl2O5Cl2:Eu2+並分析其特性 44 4-1-1 Sr3(1-x)Al2O5Cl2:3xEu2+ 44 4-1-2 Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+ 50 4-1-3 Sr2.91Al2O5Cl2:0.09Eu2+和Sr2.55Ca0.36Al2O5Cl2:0.09Eu2+之比較 55 4-2LED封裝技術之探討 58 4-2-1螢光粉濃度對於傳統封裝之影響 58 4-2-2圓臺形新型封裝方法 65 4-3使用自製之螢光粉與封裝技術製作高演色性白光LED 73 4-3-1 將Sr3(1-x)Al2O5Cl2:3xEu2+與Sr3(1-x-y)Ca3yAl2O5Cl2:Eu2+應用於傳統封裝並比較其優劣 73 4-3-2結合Sr3(1-x-y)Ca3yAl2O5Cl2:Eu2+與圓臺式封裝方式 78 第五章 結論 82 參考文獻 84 表目錄 表 2-1 可見光對應之波長 7 表 2-2 不同環境之演色性需求 26 表 2-3 光度計單位及相對應之輻射單位對照表 27 表 2-4 Sr3Al2O5Cl2近期具代表之文獻回顧 30 表 2-5 螢光粉封裝技術相關之近期文獻回顧 31 表 3-2 化學用品相關資訊 33 表 3-3 高功率(1 W)近紫外光LED原始之光電特性 33 表 4-1 Sr2.91Al2O5Cl2:0.09Eu2+與Sr2.55Ca0.36Al2O5Cl2:0.09Eu2+之吸收度與量子效率 56 表 4-2 同曲率下三種不同螢光粉濃度之pc-LED之發光特性 61 表 4-3 傳統點膠及圓臺式封裝之發光特性表 66 表 4-4 不同點膠秒數與不同BZSO/SAOC比例下之CRI值 75 表 4-5 不同點膠秒數與不同BZSO/SCAOC比例下之CRI值 75 表 4-6 BZSO以及SCAOC應用於傳統與圓臺式封裝之結果 79   圖目錄 圖 1-1 主要製作WLED的四種方法 2 圖 2-1 能量吸收與轉換[27] 6 圖 2-2 螢光體中的能量傳遞圖 6 圖 2-3 電子能量釋放示意圖 8 圖 2-4 螢光體能量吸收與放射之組態座標圖 9 圖 2-5 Stokes shift示意圖 10 圖 2-6 (a)強偶合與(b)弱偶合之組態座標圖 11 圖 2-7 非輻射能量轉移之三種原子能量座標圖 12 圖 2-8 固態發光材料中可能之躍遷現象,圖中實心圓點代表電子,空心原點為洞;實線表示放光過程,虛線則為非放光過程 14 圖 2-9 螢光體主體之陽離子示意圖 18 圖 2-10 螢光體主體之陰離子示意圖 18 圖 2- 11 活化劑之陽離子示意圖 19 圖 2- 12 抑制劑之陽離子示意圖 19 圖 2-13 三價稀土離子之能階 21 圖 2-14 色度座標圖[37] 24 圖 2-15 普朗克黑體輻射線於CIE1931色度座標 25 圖 2-16 人眼敏感函數V (λ) [27] 27 圖 2-17 Sr3Al2O5Cl2之結構[39] 29 圖 3-1 Sr3(1-x)Al2O5Cl2:3xEu2+之製作過程 34 圖 3-2 Sr3(1-x-y)Ca3yAl2O5Cl2:3xEu2+之製作過程 35 圖 3-3 含有Remote層之傳統封裝LED 36 圖 3-4 同曲率下不同螢光粉濃度之封裝LED示意圖 36 圖 3-5 圓臺式封裝示意圖 37 圖 3-6 激發光譜儀之實驗裝置圖 41 圖 3-7 放射光譜儀之實驗裝置圖 42 圖 3-8 原子能量組態座標圖 43 圖 4-1 Sr3Al2O5Cl2之TGA 44 圖 4-2 Sr2.91Al2O5Cl2:0.09Eu2+於不同溫度時之XRD圖 46 圖 4-3 Sr2.91Al2O5Cl2:0.09Eu2+於不同溫度時之放射光譜強度比較圖 46 圖 4-4 Eu2+於主體中之能階躍遷圖 47 圖 4-5 不同Eu2+濃度時Sr3(1-x)Al2O5Cl2:3xEu2+於397 nm激發下之放射光譜,內圖為其積分面積比較 48 圖 4-6 不同Eu2+濃度時Sr3(1-x)Al2O5Cl2:3xEu2+激發光譜 49 圖 4-7 不同Eu2+濃度時Sr3(1-x)Al2O5Cl2:3xEu2+之XRD圖 49 圖 4-8 x = 0.01~0.05時放射光譜積分面積與XRD主峰(103)半高寬關係圖 50 圖 4-9 Eu2+於不同晶格場強度中之能階分裂圖 51 圖 4-10 Sr3(0.97-y)Ca3yAl2O5Cl2:0.09Eu2+之放射光譜強度圖(y = 0~0.18) 52 圖 4-11 Sr3(0.97-y)Ca3yAl2O5Cl2:0.09Eu2+之XRD(y = 0~0.18) 53 圖 4-12 Sr3(0.97-y)Ca3yAl2O5Cl2:0.09Eu2+之XRD主要峰值移動情形 (y = 0~0.18) 54 圖 4-13 Sr3(0.97-y)Ca3yAl2O5Cl2:0.09Eu2+之XRD主要峰值和放射光譜波峰之移動情形 55 圖 4-14 Sr2.91Al2O5Cl2:0.09Eu2+和Sr2.55Ca0.36Al2O5Cl2:0.09Eu2+之規一化放射光譜 56 圖 4-15 Sr2.91Al2O5Cl2:0.09Eu2+和Sr2.55Ca0.36Al2O5Cl2:0.09Eu2+之放射光譜繪於CIE座標 57 圖 4- 16 (a)Sr2.91Al2O5Cl2:0.09Eu2+(b)Sr3(0.97-y)Ca3yAl2O5Cl2:0.09Eu2+之500倍放大SEM圖 57 圖 4-17 不同remote layer點膠秒數對於LED之光淬取量提升比率圖(t = 0~0.9 sec) 59 圖 4-18 藍光LED以及黃色和紅色螢光粉之放射光譜圖 60 圖 4-19 相同總曲率之下,(a)低(b)中(c)高螢光粉濃度之pc-WLED截面圖 60 圖 4-20 螢光粉濃度對照明效率之示意圖 62 圖 4-21 翻轉角度(θ)及旋轉角度(Ф)示意圖 63 圖 4-22 Ф = 0o以(紅線)及180o (藍線),θ由-90o至90o時之各角度光通量(lux) 63 圖 4-23 Ф = 0o時,θ由-90o至90o (10o/step)之各角度之色溫及其標準差 64 圖 4-24 圓臺式封裝(i-iv)與傳統式封裝(v)之通電前(a)通電後(b)實際圖 65 圖 4-25 Ф = 0o(紅線)以及180o (藍線),(i)Y2.15%R0.17%之光通量圖 67 圖 4-26 Ф = 0o(紅線)以及180o (藍線),(ii)Y2.3%R0.182%之光通量圖 67 圖 4-27 Ф = 0o(紅線)以及180o (藍線),(iii)Y2.4%R0.19%之光通量圖 68 圖 4-28 Ф = 0o(紅線)以及180o (藍線),(iv)Y2.5%R0.195%之光通量圖 68 圖 4-29 Ф = 0o(紅線)以及180o (藍線),(v)Y14.2%R0.1%之光通量圖 69 圖 4-30 (i)-(v)樣品之光通量x-y圖,其中Ф = 0o,θ由-90o至90o (10o/step) 69 圖 4-31 (i)至(v)樣品之CCT分佈圖,其中Ф = 0o,θ由-90o至90o (10o/step) 70 圖 4-32 樣品(v)之(a) θ = 0 o (b) θ = 90 o,以及樣品(iii)之(c) θ = 0 o(d) θ = 90o時之照片 72 圖 4-33 NUV-LED以及BZSO、SAOC、SCAOC三種螢光粉之發光波段 73 圖 4-34 只使用(a) SAOC(b) SCAOC螢光粉封裝之LED實際圖 76 圖 4-35 BZSO/SAOC和BZSO/SCAOC兩種封裝於不同濃度比例下與CRI之關係 77 圖 4-36 BZSO/SAOC和BZSO/SCAOC兩種封裝於CIE座標上之落點 77 圖 4-37 BZSO/SCAOC為0.6:6時之光通量圖 79 圖 4-38 BZSO/SCAOC為0.6:6時之CCT及光通量x-y圖 80

    [1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A: Materials Science & Processing,64, 417-18(1997).
    [2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Optics Letters, 29, 2001-03 (2004).
    [3] H.Wu,X.Zhang,C.Guo,J.Xu,M.Wu,andQ.Su,“Three-bandwhitelightfrom InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technology Letters, 17, 1160-62(2005).
    [4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,” Journal of Physics D: Applied Physics, 44, 075402, 6pp (2011).
    [5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material,” United States Patent:5998925 (1997).
    [6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技(2006).
    [7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
    [8] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light- emitting diode,” Applied Physics Letters, 92, 143309, 3pp (2008).
    [9] T.Fukui,K.Kamon,J.Takeshita,H.Hayashi,T.Miyachi,Y.Uchida,S.Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, 48, 112101, 6pp(2009).
    [10] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light- Emitting Diodes with Multi-Phosphor Layers,” Japanese Journal of AppliedPhysics, 49, 100203, 3pp (2010).
    [11] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emittingdiodeswithexcellentcolorrenderingproperty,”OpticsLetters,34, 1-3(2009).
    [12] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light- emittingdiodeswithmulti-layeredphosphorconfiguration,”OpticsExpress,18, 5055-5060(2010).
    [13] Z.Y.Liu,S.Liu,K.Wang,andX.B.Luo,“Measurementandnumericalstudies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Applied Optics, 49, 247-257(2010).
    [14] J.P.You,Y.-H.Lin,N.T.Tran,andF.G.Shi,“PhosphorConcentrationEffects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes,” Journal of Electronic Packaging, 132, 031010-031012(2010).
    [15] N.T.TranandF.G.Shi,“StudiesofPhosphorConcentrationandThicknessfor Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, 3556-3559(2008).
    [16] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,”IEEETransactionsonComponentsandPackagingTechnologies, 33, 680-687(2010).
    [17] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on theDevice Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, 3226-3232 (2010).
    [18] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang,H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, 9, 367-370 (2009).
    [19] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, 5145-5149 (2009).
    [20] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE Journal of Selected Topics in Quantum Electronics, 15, 1181-1188 (2009).
    [21] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs,” International of Journal Applied Ceramic Technology, 6, 465–469 (2009).
    [22] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials andPackagingStructures,” IEEE Photonics Technology Letters, 23, 137-139 (2011).
    [23] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes,” IEEE Photonics Technology Letters, 22, 1765-1767 (2010).
    [24] Y.Shuai,N.T.Tran,andF.G.Shi,“NonmonotonicPhosphorSizeDependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photonics Technology Letters, 23, 552-554(2011).
    [25] B.K.Park,H.K.Park,J.H.Oh,J.R.Oh,andY.R.Do,“SelectingMorphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” Journal of The Electrochemical Society, 159, J96-J106(2012).
    [26] 劉如熹、許育賓、徐大正、丁逸聖、林群哲、解榮軍、廣琦尚登、黃振東、陳海英、肖國瑋、蘇宏元,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書(2008).
    [27] R.J. Xie, Y. Q. Li, N. Hirosaki, H. Yamamoto, “Nitride Phosphor and Solid-state Lighting,” by Taylor and Francis Group (2011)
    [28] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究,國立交通大學應用化學研究所碩士論文(2000).
    [29] A.H. Kitai, “Visible luminescence-Solid state materials & applications,” Chapman & Hall: London (1992).
    [30] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
    [31] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films,” Materials Science and Engineering: B, 52, 59-62 (1998).
    [32] R.C.Ropp,“Luminescenceandsolidstate.,”ElsevierSciencePublishers,B.V. The Netherlands(1991).
    [33] G. Blasse, and B. Grabmaier, “Luminescent materials,” Springer-Verlag,Berlin (1994).
    [34] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技(2005).
    [35] Z.Pan,S.H.Morgan.A.Loper,V.King,B.H.LongandW.E.Collins,“Infrared to visible upconversion in Er3+-doped-lead-germanate glass: effects of Er3+ ion concentration,” Journal of Applied Physics, 77, 4688-92(1995).
    [36] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
    [37] E. F. Schubert, “LIGHT-EMITTING DIODES.” New York: Cambridge University (2006).
    [38] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院光電工程學研究所碩士論文(2007).
    [39] Y. Lu, X. Li, Y. Dong, Z. Ma, T. Hou, D. Jiao, Q. Guo, L. Guan and F. Teng, “Influence of Ca2+, Ba2+ions on the structure and luminescentproperties of Ce3+doped strontium chlorine aluminate blue phosphor,” Optik,127,4625-4629 (2016).
    [40] Y. S. Tang, S.F. Hu, W. C. Ke, C. C. Lin, N. C. Bagkar, and Ru-Shi Liu “Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2:Eu2+ phosphor for potential application in light-emitting diodes,” Applied Physics Letters, 93, 131114 (2008)
    [41] X. Zhang, B. Park, N. Choi, J. Kim, G.C. Kim, and J.H. Yoo, “A novel blue-emitting Sr3Al2O5Cl2:Ce3+,Li+ phosphor for near UV-excited white-light-emitting diodes”Materials Letters, 63, 700-702 (2009)
    [42] X. Zhang, N. Choi, K. Park, and J. Kim, “Orange emissive Sr3Al2O5Cl2:Eu2+ phosphor for warm-white light-emitting diodes,” Solid State Communications, 149, 1017-1020 (2009)
    [43] Y. Song, G. Jia, M. Yang, Y. Huang, H. You, and H. Zhang, “Sr3Al2O5Cl2:Ce3+, Eu2+:A potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes” Applied Physics Letters, 94, 091902 (2009)
    [44] J. Lee, J. Choi, X. Zhang, J. Lee, K. Park, and J. Kim, “Novel blue-emitting Sr3Ga2O5Cl2:Eu2+ phosphor for UV-pumped white LEDs,” Materials Letters, 64, 768-770 (2010)
    [45] X. Zhang, B. Park, J. Kim, J. Lee , and J. Choi, “Orange emission enhancement by energy transfer in Sr3Al2O5Cl2:Ce3+,Eu2+ phosphor for solid-state lighting,” Journal of Luminescence, 130, 117-120 (2010)
    [46] X. Dong, J. Zhang, X. Zhang, Z. Hao, and X. Liu, “Photo stimulated luminescence of Sr3Al2O5Cl2:Eu2+, Tm3+ with a large energy storage capacity,” Journal of Luminescence, 145657-660 (2014)
    [47] R. Chen, Y. Hu, L. Chen, X. J. Wang, Y. Jin, and H. Wu, “Luminescent propertiesofanovelafterglowphosphorSr3Al2O5Cl2: Eu2+, Ce3+,”Ceramics International, 40, 8229-8236(2014)
    [48] J. C. C. LO, H. LIU, S. W. R. LEE, X. GUO, H. ZHAO, “Remote Phosphor Deposition on LED Arrays with Pre-encapsulated Silicone Lens,” IEEE, 978-1-4673-6139-2 (2013)
    [49] Y. R. Kang, K. H. Kim, W. H. Kim, S. W. Jeon,M. S. Jang, J. S. Kwak, and J. P. Kim, “Utilization of Silicone Microspheres: ImprovingColor Uniformity and Reducing the Amount ofPhosphor Used in White Light-Emitting Diodes,” IEEE, 2156-3950 (2013)
    [50] M. Moscaa, F. Carusoa, L. Zambitoa, B. Seminaraa, R. Macalusoa, C. Calìa, E. Feltinb, “Warm white LED light by frequency down-conversion of mixed yellowand red Lumogen,” Proc. of SPIE Vol. 8767,87670L-1 (2013)
    [51] H. Zheng, and X. Luo, “Color Consistency Enhancement of WhiteLight-Emitting Diodes Through Substrate Design,”IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 25, NO. 5 1041-1135 (2013)
    [52] L. Shen, Y. Li, and Q. Huang, “Ultrafast fabrication of solid phosphor based white light emitting diodes: From powder synthesis to devices,” APPLIED PHYSICS LETTERS, 103, 121908 (2013)
    [53] I. U. Perera, and N. Narendran, “Understanding Heat Dissipation of a Remote Phosphor Layer in an LED System,” IEEE, 978-1-4799-5267-0 (2014)
    [54] Q. Lei, H. Rao, X. Wang, D. Zhou, C.Li, Q. Zhang, C. Zhou, and W. Zhang, “Self-Adaptive Structure of Remote Phosphor for Phosphor-Converted White LEDs” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 10, NO. 12 (2014)
    [55] P. Acuña, S. Leyre, J. Audenaert, Y. Meuret, G. Deconinck, andP. Hanselaer, “Power and photon budget of a remote phosphorLED module,” OPTICS EXPRESS, Vol. 22, No. S4, #2019148 (2014)
    [56] S. Lee, J. Y. Hong, and J. Jang, “Performance enhancement of white light-emittingdiodes using an encapsulant semi-solidificationmethod,” Journal of Materials Chemistry, C, 2, 8525-8531 (2014)
    [57] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu, and X. Luo, “Optical Performance Enhancement forChip-on-Board Packaging LEDs by AddingTiO2/Silicone Encapsulation Layer,” IEEE ELECTRON DEVICE LETTERS, VOL. 35, NO. 10 (2014)
    [58] L.Y. Chen, W.C. Cheng, C. C. Tsai, J. K. Chang, Y. C. Huang, J. C. Huang, and W. H. Cheng, “Novel broadband glass phosphors for high CRIWLEDs,” OPTICS EXPRESS, Vol. 22, No. S3, #204765, (2014)
    [59] J, C. C. LO, S. W. R. LEE1, X. GUO, and H. ZHAO2, “Multilayer Dispensing of Remote Phosphor for LED Wafer Level Packaging with Pre-formed Silicone Lens,”IEEE ELECTRONICS SYSTEM-INTEGRATION CONFERENCE, 978-1-4799-4026-4 (2014)
    [60] B. C. Lin, J. K. Huang, K. J. Chen, S. H. Chiu,Z. Y. Tu, C. C. Lin, P. T. Lee, M. H. Shih,M. T. Wang, J. M. Hwang, and H. C. Kuo, “Luminous efficiency enhancement of white light-emittingdiodes by using a hybrid phosphor structure,” Journal of Photonics for Energy, Vol. 5,057603 (2015)
    [61] K. C. Lee, D. Kima, S. R. Ganga, and J. H. Baek, “Object-oriented emission-adaptive phosphor layer for pc-white LED,” Proc. of SPIE Vol. 8835,88350K-1 (2013)
    [62] Y. T. Nien, and J. K. You, “Improved thermal quenching of Y3Al5O12:Ce phosphor ceramics with silica addition,” Journal of Alloys and Compounds, 678, 1-4 (2016)
    [63] J. B. Talbota, and J, McKittrick, “Review—Electrophoretic Deposition of Phosphorsfor Solid-State Lighting,” Journal of Solid State Science and Technology, 5 (1) R3107-R3120 (2016)
    [64] L. B. Pang, S. J. Gao, Z. J. Gao, H. L. Li, Z. J. Wang, “A novel white-bluish emitting phosphor of (Ba0.49Sr0.49)2-B2P2O10:0.02Eu2+ for white LEDs,” Optoelectronics Letters, 9, 282-284 (2013).
    [65] T. Kurushima, G. Gundiah, Y. Shimomura,M. Mikami, N. Kijima, and A. K. Cheethamb, “Synthesis of Eu2+-Activated MYSi4N7(M = Ca,Sr,Ba) and SrYSi4−xAlxN7−xOx (x = 0-1) Green Phosphors by,” Journal of The Electrochemical Society, 157 (3), J64-J68 (2010)
    [66] 龔軒志,藍綠色矽酸鹽螢光粉之合成及其應用於高演色性白光 LED,成功大學電機工程學系碩士論文 (2014)
    [67] G. Blasse and A. Bril, “luorescence and Structure of Barium Zirconium Trisilicate,” Journal of Solid State Chemistry, 2, 105108 (1970).
    [68] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallo graphicaSection A, 32, pp. 751-767 (1976).
    [69] S. C. Allen, and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” APPLIED PHYSICS LETTERS, 92, 143309(2008)
    [70] M. Dal Lago, M. Meneghinia, N. Trivellina,b, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “Phosphors for LED-based light sources: Thermal properties and reliability issues,” Microelectronics Reliability, 52, 2164–2167(2012)
    [71] Z. Y. Liu, S. Liu,K. Wang, and X. B. Luo, “Studies on Optical Consistency of White LEDsAffected by Phosphor Thickness and ConcentrationUsing Optical Simulation,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 33, NO. 4, 1521-3331 (2010)
    [72] R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, andS. Liu, “Design of a novel freeform lens for LED uniformillumination and conformal phosphor coating,” OPTICS EXPRESS, Vol. 20, No. 13, 13727 (2012)

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE