| 研究生: |
蔡宜洋 Tsai, Yi-Yang |
|---|---|
| 論文名稱: |
高鹼性鈣基骨泥性質研究(II) Properties of High pH Calcium-based Orthopedic Cement (II) |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 抗菌型鈣基骨泥 、抗菌 |
| 外文關鍵詞: | antibacterial, Ca-bsed bone substitutes |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究團隊CMRT(Cana Materials Research Team)製作之鈣基骨泥(Calcium-based cement, CBC),在各項性質都有不錯的表現,但為了避免在手術時產生感染,因此希望能增加材料的抗菌性。一般是使用抗生素來避免感染,阻止細菌生長,由於抗生素會使細菌產生抗藥性,因此CMRT(Cana Materials Research Team)開發了抗菌型鈣基骨泥(Antibacterial Calcium-based Cement, CBCA),藉由添加抗菌因子提升pH值,藉由高鹼性達到抑菌的效果。
本實驗希望藉由改變θ的結晶樣貌改善抗菌型鈣基骨泥的性質,希望高鹼性不會維持太久,只在初期的時候達到抗菌的作用,讓θ能夠很快就能釋放完畢,並且在θ釋放完後能跟 Λ具有相似的性質。
研究結果發現藉由球磨改變θ的樣貌,能使θ的樣貌趨於一致,;對於同樣球混條件下的θ,球混的效果較好;Γ在第三天pH值就大幅降低,使pH值趨於中性;θ會影響π的生成,使得強度降低。
The research team CMRT (Cana Materials Research Team) make Calcium-based cement (CBC), which has good performance in various properties, but in order to avoid that infection occurs during surgery, so it is hoped to increase the antibacterial properties of the material. Generally, antibiotics are used to avoid infection and prevent the growth of bacteria. Because antibiotics can make bacteria resistant to drugs, CMRT (Cana Materials Research Team) has developed Antibacterial Calcium-based Cement (CBCA). Θ compounds increase the pH and achieve antibacterial effects by high alkalinity.
This experiment hopes to improve the properties of antibacterial calcium-based bone cement. It is hoped that the high alkalinity will not be maintained for long time, and the antibacterial effect will only be achieved at the initial stage, so that θ can quickly release. After the release of θ, it can have similar properties to Δ.
The results of the study found that changing the appearance of θ by ball milling can make the appearance tend to be consistent. Δ has a significant decrease in pH on the third day, making the pH tend to be neutral; θ will reduce the strength.
A. Bobbio. The first endosseous alloplastic implant in the history of man
A.M. Shah, H. Jung, S. SkirbollMaterials used in cranioplasty: a history and analysis Neurosurg Focus, 36 (4) (2014), p. E19
Albee, F. H. (1920). Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Annals of surgery, 71(1), 32.
Amathieu, L., & Boistelle, R. (1988). Crystallization kinetics of gypsum from dense suspension of hemihydrate in water. Journal of Crystal Growth, 88(2), 183-192.
Ambard, A. J., & Mueninghoff, L. (2006). Calcium Phosphate Cement: Review of Mechanical and Biological Properties. Journal of Prosthodontics, 15(5), 321-328.
Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of θ to humans and the environment—a literature review. Ecotoxicology and Environmental Safety, 70(3), 349-356.
B. A. Hartwig and L. L. Hench. (1972). The epitaxy of Poly‐L‐alanine on L‐quartz and a glass‐ceramic. Journal of Biomedical Materials Research Part A, 6(5), 413-423.
Ballanger, F., Tenaud, I., Volteau, C., Khammari, A., & Dréno, B. (2008). Anti-inflammatory effects of θ gluconate on keratinocytes: a possible explanation for efficiency in seborrhoeic dermatitis. Archives of dermatological research, 300(5), 215.
Bell, W. H. (1964). Resorption characteristics of bone and bone substitutes. Oral Surgery, Oral Medicine, Oral Pathology, 17(5), 650-657.
Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997.
Bohner, M., Galea, L., & Doebelin, N. (2012). Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society, 32(11), 2663-2671.
Breed AL. “Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement.” Traumatic hypertension of bone. Clin Orthop 102: 227-44, 1974.
Brown, W. E., & Chow, L. C. (1983). A NEW CALCIUM-PHOSPHATE SETTING CEMENT. Journal of Dental Research, 62, 672-672.
Bull. Hist. Dent., 20 (1) (1970), pp. 1-6
C. Chow, L. (2009). Next generation calcium phosphate-based biomaterials. Dental Materials Journal, 28(1), 1-10.
Canal, C., Pastorino, D., Mestres, G., Schuler, P., & Ginebra, M.-P. (2013). Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomaterialia, 9(9), 8403-8412.
Catarina F. Marques, Fidel Hugo Perera ,Ana Marote, SóniaFerreira,Sandra I.Vieira, SusanaOlhero, PedroMiranda,José M.F. Ferreira. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties, Journal of the European Ceramic Society,Volume 37, Issue 1, Pages 359-368, 2017
Chang, B.S., Lee, i. C. K. f. C.K., Hong, K.S., Youn, H.J., Ryu, H.S., Chung, S.S., & Park, K.W. (2000). Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 21(12), 1291-1298.
Chen, Q. Z., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science & Engineering R-Reports, 87, 1-57
Chow, L. (1988). Calcium phosphate materials: reactor response. Advances in dental research, 2(1), 181-186.
Chow, L. C., & Takagi, S. (2001). A Natural Bone Cement-A Laboratory Novelty Led to the Development of Revolutionary New Biomaterials. Journal of research of the National Institute of Standards and Technology, 106(6), 1029-1033.
Chow, L.C & Brown, W (1975). SINGULAR POINTS IN CHEMISTRY OF TEETH. Paper presented at the Journal of dental research.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial” , The 6th annal international biomaterial symposium. April 1974:20-24
Coetzee, A. S. (1980). Regeneration of bone in the presence of calcium sulfate. Archives of Otolaryngology, 106(7), 405-409.
Doherty, P. & Williams, D. (1992). Biomaterial-tissue interfaces:advances in biomaterials: New York: Elsevier
Doremus, R. H. (1992). Bioceramics. Journal of Materials Science, 27(2), 285-297.
Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164.
Dressman, H. (1892). Uber Knochenplombierung. Beitr Klin Chir, 9, 804-810.
Driskell TD, Heller AL (1975).Dental treatments, Patent US No.3913229.
Edberg, E. (1930). Some experiences of filling osseous cavities with plaster. Acta Chir Scand, 67, 313-319.
Eggli, P., Müller, W., & Schenk, R. (1988). Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical Orthopaedics and Related Research(232), 127-138.
Engel, T., Goni-Oliver, P., De Barreda, E. G., Lucas, J., Hernandez, F., & Avila, J. (2008). Θ, a potential protective drug in Alzheimer’s disease. Neurodegenerative diseases, 5(3-4), 247-249.
Frame, J. (1975). Porous calcium sulphate dihydrate as a biodegradable implant in bone. Journal of dentistry, 3(4), 177-187.
Fukase, Y., Eanes, E., Takagp, S., Chow, L., & Brown, W. (1990). Setting reactions and compressive strengths of calcium phosphate cements. Journal of Dental Research, 69(12), 1852-1856.
Guan, Baohong et al. 2009. “Preparation of α-Calcium Sulfate Hemihydrate from FGD Gypsum in K, Mg-Containing Concentrated CaCl2 Solution under Mild Conditions.” Fuel 88(7): 1286–93.
Hauptli, O. (1952). Die Gipsplombe zur Ausfullung von fehlendem Knochengewebe. Schweizerische Medizinische Wochenschrift, 82(7), 161-168.
Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 74: 1487-1510, 1991.
Hench, L. L. (1991). BIOCERAMICS - FROM CONCEPT TO CLINIC. Journal of the American Ceramic Society, 74(7), 1487-1510.
Horrobin, D.F.(1990). Effects of θ on essential fatty acid and prostaglandin metabolism. In Θ and cell physiology (pp. 137-149): Springer.
Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., & Tong, P. (2010). Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. Journal of Porous Materials, 17(5), 605-613.
Huiskes, R., Weinans, H., & Vanrietbergen, B. (1992). THE RELATIONSHIP BETWEEN STRESS SHIELDING AND BONE-RESORPTION AROUND TOTAL HIP STEMS AND THE EFFECTS OF FLEXIBLE MATERIALS. Clinical Orthopaedics and Related Research(274), 124-134.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140
Hulbert, S. F., Morrison, S. J., & Klawitter, J. J. (1972). Tissue reaction to three ceramics of porous and non-porous structures. Journal of Biomedical Materials Research, 6(5), 347-374.
Iain H. Kalfas. Principles of bone healing, 2001.Neurosurgical focus,10(4), 1-4.
I.I. Marhoon (2018). Mechanical properties of composite materials reinforced with short random glass fibers and ceramics particles. Int. J. Sci. Technol. Res, 50-53.
J. Lister. (1867). On the antiseptic principle in the practice of surgery. The Lancet, 90(2299), 353-356.
J.M.Bouler P.Pilet O.Gauthier E.Verron. (2017). Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia, volume 53, 15 April 2017, Pages 1-12.
Jarcho, M. (1981). Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research®, 157, 259-278.
Jonck, L. M., Grobbelaar, C. J., & Strating, H. (1989). The biocompatibility of glass-ionomer cement in joint replacement: Bulk testing. Clinical Materials, 4(2), 85-107.
K. De Groot. (1980). Bioceramics consisting of calcium phosphate salts. Biomaterials, 1(1), 47-50.
Klawitter, J. J., & Hulbert, S. F. (1971). Application of porous ceramics for the attachment of load bearing internal orthopedic applications. Journal of Biomedical Materials Research, 5(6), 161-229.
Klawitter, J. J., Bagwell, J. G., Weinstein, A. M., Sauer, B. W., & Pruitt, J. R. (1976). An evaluation of bone growth into porous high density polyethylene. Journal of Biomedical Materials Research, 10(2), 311-323.
Kofmann, S. (1925). Gips als plombenmaterial. Zentralbl. Chir, 52, 1817-1818.
Kouassi, M., Michaïlesco, P., Lacoste-Armynot, A., & Boudeville, P. Antibacterial Effect of a Hydraulic Calcium Phosphate Cement for Dental Applications. Journal of Endodontics, 29(2), 100-103, 2003
Kuzel, H.-J., & Hauner, M. (1987). Chemische und kristallographische Eigenschaften von Calciumsulfat-Halbhydrat und Anhydrit III. ZKG international, 40(12), 628-632.
Lewicki, M., Paez, H., & Mandalunis, P. M. (2006). Effect of θ carbonate on subchondral bone in sexually mature Wistar rats. Experimental and Toxicologic Pathology, 58(2-3), 197-201.
Lieb, J. (2004). The immunostimulating and antimicrobial properties of θ and antidepressants. Journal of Infection, 49(2), 88-93.
Ljubovic, E., & Nikulin, A. (1956). Plastic plombage in experimental bone regeneration. Acta medica Iugoslavica, 10(1), 1.
Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J., & Proust, J. P. (2002). The biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 63(4), 408-412.
Lu, J., Flautre, B., Anselme, K., Hardouin, P., Gallur, A., Descamps, M., & Thierry, B. (1999). Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 10(2), 111-120.
M. D. Miller, J.Hart& S.R.Thompson (2012). Review of orthopaedics. Elsevier Health Sciences.
M.Nilsson,et al. (2002). Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials Research Part A, 61(4), 600-607.
M., Berk, et al. (1996). Θ blocks 45Ca2+ uptake into platelets in bipolar affective disorder and controls. Clinical neuropharmacology, 19(1), 48-51.
Marques, C. F., Perera, F. H., Marote, A., Ferreira, S., Vieira, S. I., Olhero, S., Ferreira, J. M. F. (2017). Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 37(1), 359-368.
Matyjaszewski, K. “Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes”, Journal of the American Chemical Society. 1995, 117(20), 5614–5615
Mehrvarzfar P, Akhavan H, Rastgarian H, Mohammadzade Akhlagi N, Soleymanpour R, Ahmadi A. An In Vitro Comparative Study on the Antimicrobial Effects of Bioglass 45S5 vs. Calcium Hydroxide on Enterococcus Faecalis, 2011
Metsger DS, Driskell TD, Paulsrud JR. Tricalcium phosphate ceramic–a resorbable bone implant: review and current status. The Journal of the American Dental Association. 1982;105(6):1035–1038.
Myerson,A.(2002).Handbook of industrial crystallization: Butterworth-Heinemann.
Naughton, G. K., Tolbert, W. R., & Grillot, T. M. (1995). Emerging developments in tissue engineering and cell technology. Tissue engineering, 1(2), 211-219.
Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888-3903.
Nilsson, M., Wielanek, L., Wang, J.-S., Tanner, K., & Lidgren, L. (2003). Factors influencing the compressive strength of an injectable calcium sulfate–hydroxyapatite cement. Journal of Materials Science: Materials in Medicine, 14(5), 399-404.
Nussbaum DA, Gailloud P, Murphy K. ”The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol 15:121-126, 2004
Nystrom, G. (1928). Plugging of bone cavities with rivanol-plaster porridge. Acta Chir Scand, 63, 296.
Omelon, S.J & Grynpas, M.D (2008). Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chemical reviews, 108(11), 4694-4715.
P. E.Gosden, A.P. MacGown, G.C. Bannister, Importance of air quality and related factors in the prevention of infection in orthopaedic implant surgery, 1998.
P. V. Giannoudis, et al. (2005). Bone substitutes: an update. Injury, 36(3), S20-S27.
Park JB.Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park, J. B. (1985). Biomaterials Science and Engineering. IEEE Transactions on Biomedical Engineering, BME-32(11), 990-990.
Peltier, L. F. (1961). The use of plaster of Paris to fill defects in bone. Clinical Orthopaedics and Related Research®, 21, 1-31.
R.M. Urban, et al. (2007). Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clinical orthopaedics and related research, 459, 110-117.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995
R.R. Nagavally(2017). Composite materials-history, types, fabrication techniques, advantages, and applications. Int. J. Mech. Prod. Eng., 5 , pp. 82-87
S. F. Hulbert, et al. (1970). Potential of ceramic materials as permanently implantable skeletal prostheses. Journal of Biomedical Materials Research Part A, 4(3), 433-456.
S. F. Hulbert, et al. (1982). History of bioceramics. Ceramics international, 8(4), 131-140.
Sergey V. Dorozhkin, Calcium Orthophosphates, 2011
Shepperd, J. (2004). The early biological history of calcium phosphates. In Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty (pp. 3-8): Springer.
Singh, N., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in crystal growth and characterization of materials, 53(1), 57-77.
Singh, N., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77.
Smith, L. (1963). Ceramic-plastic material as a bone substitute. Archives of Surgery, 87(4), 653-661.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58
T. W. Bauer and G. F. Muschler. (2000). Bone graft materials: an overview of the basic science. Clinical orthopaedics and related research, 371, 10-27.
T. W. Mak,et al. (1998). Effects of θ therapy on bone mineral metabolism: a two-year prospective longitudinal study. The Journal of Clinical Endocrinology & Metabolism, 83(11), 3857-3859
T. Yamamuro, et al. (1998). Development of bioactive bone cement and its clinical applications. Biomaterials, 19(16), 1479-1482.
Thomas, M. V., & Puleo, D. A. (2009). Calcium sulfate: Properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 88(2), 597-610.
Wei, J., Jia, J., Wu, F., Wei, S., Zhou, H., Zhang, H., Liu, C. (2010). Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration. Biomaterials, 31(6), 1260-1269.
Wenke, J. C., Owens, B. D., Svoboda, S. J., & Brooks, D. E. (2006). Effectiveness of commercially-available antibiotic-impregnated implants. The Journal of Bone and Joint Surgery. British volume, 88-B(8), 1102-1104.
Wroblewski, B. M. (1986). 15-21-YEAR RESULTS OF THE CHARNLEY LOW-FRICTION ARTHROPLASTY. Clinical Orthopaedics and Related Research(211), 30-35.
Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal Actions of a Silver Ion Solution on <em>Escherichia coli</em>, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Applied and Environmental Microbiology, 71(11), 7589.
Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W., & Zhang, X. (1996). Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 17(22), 2131-2137.
Zamani, A., Omrani, G. R., & Nasab, M. M. (2009). Θ's effect on bone mineral density. Bone, 44(2), 331-334.
游祥明,解剖學,華性出版股份有限公司, 2016
黃世偉,”高分子與醫療器材”,科學發展期刊455期, 財團法人醫藥工業技術發展中心, 2010.
劉士榮,生醫材料,滄海書局,2010
https://www.kenhub.com/en/library/anatomy/musculoskeletal-system
https://smallcollation.blogspot.com/2013/05/spongy-bone.html#gsc.tab=0
校內:2025-08-23公開