簡易檢索 / 詳目顯示

研究生: 陳瓊安
Chen, Chiung-An
論文名稱: 應用於無線身體感測網路之高效能微控制器矽核設計
An Efficient Micro Control Unit Core Design for Wireless Body Sensor Network
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 105
中文關鍵詞: 微控制器功率管理資料壓縮可重置式濾波器多重感測控制器非同步介面無線身體感測網路
外文關鍵詞: micro control unit, power management, data compressor, reconfigurable filter, multi-sensor, asynchronous interface, wireless body sensor network
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感測器所量測的生醫訊號會先後經過數位類比轉換器、電源供應、控制器、數位信號處理器和信號傳送輸出;在無線身體感測網路系統中,尤以長期健康看照為最,以TI Zigbee無線模組為例,其功率損耗為81mW;因此,有超過90%的功率損耗是在無線傳輸部分;降低無線傳輸電路的功率損耗有兩個方法,一是用功率管理,另一則是利用資料壓縮降低傳輸資料量。因此一個新的微控制器設計應用在身體感測網路是為了符合降低功率損耗的要求和增加控制、壓縮和資料傳輸功能。
    本論文提出的微控制器具有低成本、低功率損耗以及高效能的特性。此微控制器由非同步介面、暫存器庫、可重置式濾波器、斜率特徵預測電路、無失真資料壓縮、錯誤更正電路、通用非同步收發電路介面(UART)、功率管理電路和多重感測控制器所組成。非同步介面是為了提升不同頻率的訊號交換效能,更進一步提高系統的效率和擴展系統的可塑性;可重置式濾波器是用來降低有效降低生醫訊號的多種雜訊,其中包含低通、帶通和高通三種功能;斜率特徵預測電路和無失真資料壓縮的設計,可有效的降低無線傳輸的資料量,其壓縮率最高可達2.68;而錯誤更正電路的設計可增加無線傳輸的可信度,可將無線傳輸遺失的位元,準確無誤的更正至正確。在長期健康監控系統中,一個功率管理電路的設計,利用工作及睡眠模式的切換,能有效的降低無線身體感測網路系統的功率消耗。
    本系統以超大型積體電路(VLSI)實現,並成功將此電路以其中電路可程式邏輯閘陣列(FPGA)發展版驗證;此設計於TSMC0.18μm的CMOS製程下,其邏輯閘數為67-K,且於操作頻率為100MHz時功率損耗為5.8mW;此電路亦以TSMC0.13μm製程實現,操作頻率133MHz的功率損耗則為1.9mW。其中功率管理電路邏輯閘數僅為0.12K,佔整體電路功率損耗不到1.5%;以體溫為例,一般操作下為60分鐘全程開啟;而在功率管理電路的控管下,只需每分鐘開啟一秒,便將資料傳輸完成,此步驟替系統省下97.2%的功率損耗。此外,資料壓縮電路,以ECG資料量為例,每秒有360筆值,每筆值為11個位元數編碼,故一秒的資料量為3960位元碼;加入無失真資料壓縮電路,其壓縮率為2.68,則輸出位元數減至1477位元碼,故可縮短無線傳輸時間,藉以降低無線傳輸的功率損耗。
    本論文提出的微控制器矽核設計相較於其他已發表的論文,此設計無論在效能、功能、面積大小與相容性皆有較好的表現,其中以功率管理和資料壓縮的設計,最為有效且顯著降低系統功率損耗。本論文的主要貢獻為,完成設計一個高效率的微處理器矽核設計並提供了一個良好的基礎得以發展無線身體網路系統。

    Biomedical signals are measured using bio-sensors, which require an analog-to-digital (ADC) converter, power supplies, a controller, digital signal processor (DSP), and output transmission. More than 90% of the power of wireless body sensor networks (WBSNs) is consumed by the RF Module, especially with long-term healthcare monitoring. Taking the Zigbee wireless module from Texas Instruments (TI) as an example, the power of the module is 81mW. Two ways to reduce the power needed by the RF module are power management and data compression. The current work aims to reduce this power requirement, while also improving the functions of control, compression, and transmission, and thus it presents the design of a new micro control unit (MCU) for a wireless body sensor network (WBSN).
    The low-cost, low-power and high performance MCU core proposed in this work consists of an asynchronous interface, a register bank, a reconfigurable filter, a slope-feature forecast function, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM) function and a multi-sensor controller. To improve system performance and its ability for expansion, an asynchronous interface is added to handle signal exchanges between different clock domains. In order to eliminate the noise due to various bio-signals, a reconfigurable filter is used to provide average, binomial and sharpen filters. The slope-feature forecast and the lossless data encoder with a top compression rate (CR) of 2.68 are used to reduce the amount of data obtained from the various biomedical signals to short the time of transmission.
    The ECC encoder is used to increase the reliability of wireless transmission, while the UART interface enables the proposed design to be compatible with most wireless devices. In addition, for long-term healthcare monitoring, a power management technique is developed in this work to reduce the power consumption of the WBSN system. The proposed design can operate with four different bio-sensors simultaneously, and was successfully tested with an FPGA verification board. The VLSI architecture used in this work contains 7.67-K gate counts and consumes 5.8 mW or 1.9 mW at a 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process, respectively. The gate count of PWM is 0.12K only, and its power is less than 1.5% of whole MCU design. For example, the power supply used for the device to monitor body temperature is turned on for 60 minutes without any interruption. But with the PWM circuit, the power only needs to be turned on for one second each minute to transmit the data. This reduces the amount of power the WBSN system needs by 97.2%. Furthermore, another example of reduced power consumption is with the ECG signals. The sample rate with the ECG is 360 times per second, and the output is 11 bits per data, which means that the total data of ECG is 3,690 bits per second. However, this decreases to 1,477 bits when the CR 2.68 data compressor used, significantly reducing both the time and power needs to the wireless module.
    Compared with previous techniques, the results show that this design achieves higher performance, has more functions, greater flexibility and better compatibility than other micro controller designs. The reduced power consumption is due to better power management and the use of a lossless data compressor. The contribution of this proposed work is that it provides an expandable system for WBSN with an efficient MCU core design.

    Abstract (Chinese) I Abstract (English) IV Contents IX List of Figures XII List of Table XIV Chapter1 1 Introduction 1 1.1Motivation 1 1.2 Organization of Dissertation 7 Chapter2 9 Reviews of Healthcare Monitoring in Wireless Body Sensor Networks 9 2.1 Previews of Wireless Body Sensor Networks 9 2.1.1 WBSN in Hospital Healthcare Monitoring Application 13 2.2 System Description 17 Chapter3 19 Design Concepts and Algorithms 19 3.1 Controller 19 3.1.1 Concepts of Controller 19 3.1.2 Controller in System Realization 21 3.2 Huffman Coding Algorithm 23 3.2.1 Concepts of Huffman Coding Algorithm 23 3.2.2 Possibility and Statistics Analysis 26 3.2.3 Table Tree Distribution 29 3.3 Reconfigurable Scaling Algorithm 32 3.3.1 Moving Average Filter 32 3.3.2 Binomial Filter 34 3.3.3 Sharpen Filter 36 3.3.4 Reconfigurable Control 38 Chapter4 40 System Architecture and Design 40 4.1 Lossless Data Compressor 40 4.1.1 Forecaster Architecture 41 4.1.2 Entropy Coding Architecture 43 4.2 Micro Control Unit 46 4.2.1 Asynchronous Interface Architecture 47 4.2.2 Multi-Sensor Controller Architecture 49 4.2.3 Power Management Architecture 52 4.2.4 Register Bank Architecture 54 4.2.5 Reconfigurable Filter Architecture 56 4.2.6 Error Correct Coding Architecture 62 4.2.7 Universal Asynchronous Receiver/Transmitter (UART) Architecture 64 4.3 Radio Frequency Circuit 66 4.4 Wireless Body Sensor Network Node 74 Chapter5 78 Experimental Results and Discussions 78 5.1 Micro Control Unit 78 5.2 Radio Frequency 89 Chapter6 92 Conclusions and Further Works 92 6.1 Conclusions 92 6.2 Discussions 93 6.2.1 MCU 93 6.2.2 RF 94 6.2.3 WBSN 94 6.2.4 Further Works 95 References 97 Vita 103 Publication 104

    [1] Webster Webster Webster Webster .J. G., Medical Instrumentation Application and Design, 4th ed., John Wiley & Sons, 2010.
    [2] Yang, Y.W.; Divsholi, B.S. Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring. Sensors 2010, 10, 11644–11661.
    [3] Huang, P.H.; Chen, J.L.; Larosa, Y.T.; Chiang, T.L. Estimation of distributed fermat-point location for wireless sensor networking. Sensors 2011, 11, 4358–4371.
    [4] Martin, M.; Muhammad, T.; Takuro, S. Data collection method for mobile sensor networks based on the theory f thermal fields. Sensors 2011, 11, 7188–7203.
    [5] Carlos, O.; González-Morán, J.J. Agustín flores-cuautle and ernesto suaste-gómez. A piezoelectric plethysmograph sensor based on a Pt wire implanted lead lanthanum zirconate titanate bulk ceramic. Sensors 2010, 10, 7146–7156.
    [6] Lee, S.S.; Nam, D.H.; Hong, Y.S.; Lee, W.B.; Son, I.H.; Kim, K.H.; Choi, J.G. Measurement of blood pressure using an arterial pulsimeter equipped with a hall device. Sensors 2011, 11, 1784–1793.
    [7] Antonia, M.C.; Gonzalo, P.; Matilde, S.; Isidro V.R. Digital image sensor-based assessment of the status of Oat crops after frost damage. Sensors 2011, 11, 6015–6036.
    [8] Jani, M.; Matthew, J.T.; Erkka, L.; Lauri, K. Timing-error detection design consideration in Subthreshold: an 8-bit microprocessor in 65 nm CMOS. Sensors 2012, 2, 180–196.
    [9] Chen, C.A.; Chen, S.L.; Huang, H.Y.; Luo, C.H. An asynchronous multi-sensor micro control unit for wireless body sensor networks (WBSNs). Sensors 2011, 11, 7022–7036.
    98
    [10] Chen, S.L.; Lee, H.Y.; Chen, C.A.; Huang, H.Y.; Luo, C.H. Wireless body sensor network with adaptive low power design for biometrics and healthcare applications. IEEE Syst. J. 2009, 3, 398–409.
    [11] Wang, D.; Zhang, L.; Liu, J.; Liu, R. Embedded speech recognition system on 8-bit MCU core. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing 2004 (ICASSSP 04), Montreal, Canada, 17–21 May 2004; Volume 5, pp. 17–21.
    [12] Arm, C.; Gyger, S.; Masgonty, J.M.; Morgan, M.; Nagel, J.L.; Piguet, C.; Rampogna, F.; Volet, P. Low-power 32-bit dual-MAC 120 uW/MHz 1.0 vicyflex1 DSP/MCU core. IEEE J. Solid-State Circuits 2009, 44, 2055–2064.
    [13] Lee, H.Y.; Chen, S.L.; Luo, C.H. A CMOS smart thermal sensor for biomedical application. IEICE Trans. Electron. 2008, E91-C, 96–104.
    [14] Amirtharajah, G.R.; Chandrakasan, A.P. A micropower programmable DSP using approximate signal processing based on distributed arithmetic. IEEE J. Solid-State Circuits 2004, 39, 337–347.
    [15] Rejc, M.; Pantos, M. Short-term transmission-loss forecast for the slovenian transmission power system based on a fuzzy-logic decision approach. IEEE Trans. Power Syst. 2011, 4, 432–444.
    [16] Robert, L.; Nadarajan, R. Simple lossless preprocessing algorithms for text compression. IET Software 2009, 3, 37–45.
    [17] Patauner, C.; Marchioro, A.; Bonacini, S.; Rehman, A.U.; Pribyl, W. A Lossless data compression system for a real-time application in HEP data acquisition. IEEE Trans. Nucl. Sci. 2011, 58, 1738–1744.
    [18] Krishnan, S.C.; Panigrahy, R.; Parthasarathy, S. Error-correcting codes for ternary content addressable memories. IEEE Trans. Comput. 2009, 58, 275–279.
    [19] C. C. Enz; A. El-Hoiydi; J. D. Decotignie; V. Peiris. WiseNET. An ultralow-power wireless sensor network solution. IEEE Computer, vol. 37, issue 8, Aug. 2004, pp.62 - 70.
    [20] M. H. Jin, R. G. Lee, C. Y. Kao, Y. R. Wu, D. F. Hsu, T. P. Dong, and K. T. Huang. Sensor Network Design and Implementation for Health Telecare and Diagnosis Assistance Applications. in Con. Rec. 2005 IEEE Int. Conf. on Parallel and Distributed System.,2005, Vol.2, pp:407-41H.
    [21] I. E. Lamprinos, A. Prentza, E. Sakka, D. Koutsouris. Energy-efficient MAC Protocol for Patient Personal Area Networks. Conf. Rec. 2005 IEEE Int. Conf. Engineering in Medicine and Biological Society, 2005, pp:3799 - 3802
    [22] S. L. Chen; H. Y. Lee; C. A. Chen; and Ching-Hsing Luo. Wireless Thermal Sensor Network with Adaptive Low Power Design. IEEE Engineering in Medicine and Biology International Conference 2007 (SFGBM), Lyon, France, Aug 23-26, 2007.
    [23] J. Wang. Fundamentals of erbium-doped fiber amplifiers arrays (Periodical style—Submitted for publication). IEEE J. Quantum Electron., submitted for publication.
    [24] C. M. Hsu; H. Y. Lee; C. H. Luo. The 2.4GHz Wireless Communication System for Biomedical Signals Transmit in Healthcare Monitoring System. Conf. Rec. 2006 Asia-Pacific Conference of Transducers and Micro-Nano Technology.
    [25] L. B. Ruiz; J. M. Nogueira; A. A. F. Loureiro. MANNA: A Management Architecture for Wireless Sensor Networks. IEEE Communications Magazine, vol. 41, issue 2, Feb. 2003 pp.116 - 125.
    [26] Arm, C.; Gyger, S.; Masgonty, J.M.; Morgan, M.; Nagel, J.L.; Piguet, C.; Rampogna, F.; Volet, P. Low-power 32-bit dual-MAC 120 uW/MHz 1.0 vicyflex1 DSP/MCU core. IEEE J. Solid-State Circuits 2009, 44, 2055-2064.
    [27] Huffman, D.A. A method for the construction of minimum redundancy codes. Proc. Inst. Radio Eng. 1951, 40, 1098–1101.
    [28] Alecu, T.I.; Voloshynovskiy, S.; Pun, T. The Gaussian transform of distributions: Definition, computation and application. IEEE Trans. Sign. Process. 2006, 54, 2976–2985.
    [29] Monton, E.; Hernandez, J.F.; Blasco, J.M.; Herve, T.; Micallef, J.; Grech, I.; Brincat, A. Body area network for wireless patient monitoring. IET Commun. 2008, 2, 215-222.
    [30] Huffman, D.A. A method for the construction of minimum redundancy codes. Proc. Inst. Radio Eng. 1951, 40, 1098-1101.
    [31] Moody, G.B.; Mark, R.G. The impact of the MIT/BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50.
    [32] Stojmenovic, I. Recursive algorithms in computer science courses: Fibonacci numbers and binimial coefficients. IEEE Trans. Educ. 2000, 43, 273–276.
    [33] Wang, Y; Song, K. A new approach to realize UART. In Proceedings of IEEE International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT 2011), Harbin, China, 12–14 August 2011; Volume 5, pp. 2749–2752.
    [34] T. Arslan, N. Haridas; E. Yang; A. T. Erdogan; N. Barton; A. J. Walton; J. S. Thompson; A. Stoica; T. Vladimirova; K. D. McDonald-Maier; W.G.J. Howells. ESPACENET: A Framework of Evolvable and Reconfigurable Sensor Networks for Aerospace - Based Monitoring and Diagnostics.in Conf. Rec. 2006 First NASA / ESA Conference on Adaptive Hardware and Systems (AHS'06), pp. 323-329.
    [35] C. M. Hsu; H. Y. Lee; C. H. Luo. The 2.4GHz Wireless Communication System for Biomedical Signals Transmit in Healthcare Monitoring System. Conf. Rec. 2006 Asia-Pacific Conference of Transducers and Micro-Nano Technology.
    [36] L. B. Ruiz; J. M. Nogueira; A. A. F. Loureiro. MANNA: A Management Architecture for Wireless Sensor Networks. IEEE Communications Magazine, vol. 41, issue 2, Feb. 2003 pp.116 - 125.
    [37] Choi, H.; Liu, W.; Sung, W. VLSI implementation of BCH error correction for multilevel cell NAND flash memory. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 843-847.
    [38] Amirtharajah, G.R.; Chandrakasan, A.P. A micropower programmable DSP using approximate signal processing based on distributed arithmetic. IEEE J. Solid-State Circuits 2004, 39, 337-347.
    [39] Chen, S.L.; Lee, H.Y.; Chen, C.A.; Huang, H.Y.; Luo, C.H. Wireless body sensor network with adaptive low power design for biometrics and healthcare applications. IEEE Syst. J. 2009, 3, 398-409.
    [40] Arm, C.; Gyger, S.; Masgonty, J.M.; Morgan, M.; Nagel, J.L.; Piguet, C.; Rampogna, F.; Volet, P. Low-power 32-bit dual-MAC 120 uW/MHz 1.0 vicyflex1 DSP/MCU core. IEEE J. Solid-State Circuits 2009, 44, 2055-2064.
    [41] Wang, D.; Zhang, L.; Liu, J.; Liu, R. Embedded speech recognition system on 8-bit MCU core. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing 2004 (ICASSSP 04), Montreal, Canada, 17–21 May 2004; Volume 5, pp. 17-21.
    [42] Lee, H.Y.; Chen, S.L.; Luo, C.H. A CMOS smart thermal sensor for biomedical application. IEICE Trans. Electron. 2008, E91-C, 96-104.
    [43] Texas Instruments (TI). Under Analog to Digital Converter on Data Converts Topic; Available online: http://www.ti.com/ (accessed on 5 July 2011).
    [44] Chen, C.A.; Chen, S.L.; Huang, H.Y.; Luo, C.H. An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs). Sensors, Vol. 12, pp. 16211-16227. Nov., 2012.
    [45] S. L. Chen; J. M. Jou; C. M. Sun; Y. C. Wu; H. Yang; H. Y. Su. Reconfigurable Processor Core Design for Network-on-a-Chip. Conf. Rec. 2004 Int. Computer Symposium.
    [46] C. M. Hsu; H. Y. Lee; C. H. Luo. The 2.4GHz Wireless Communication System for Biomedical Signals Transmit in Healthcare Monitoring System. Conf. Rec. 2006 Asia-Pacific Conference of Transducers and Micro-Nano Technology.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE