| 研究生: |
黃瑞祥 Huang, Reui-Siang |
|---|---|
| 論文名稱: |
適用於微處理器之低功率多工存取埠暫存器檔案電路設計與實現 Design and Implementation of a Low-Power Multi-Port Register File for Microprocessors |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 暫存器檔案 、漏電流功率消耗 |
| 外文關鍵詞: | register file, leakage power |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近代的微處理器中,暫存器檔案電路是主要的核心儲存元件且會有大量的功率消耗。我們提出一種新型態儲存細胞架構用來切斷漏電流路徑以達到減少漏電流所造成之功率消耗。在本論文中,四寫入埠、八讀出埠、容量為32 x 32位元之暫存器檔案電路被設計及實現在TSMC 0.18μm CMOS製程之下,用來評估在不同儲存細胞架構下的電路速度及功率消耗。應用我們所提出的新型態儲存細胞所建立之多工存取埠暫存器檔案電路證明能有效的在功率消耗上獲得改善。模擬的結果得知與傳統的儲存細胞架構相比,在儲存細胞陣列上的漏電流功率消耗可減少22%。使用我們的儲存細胞架構,在資料寫入週期內的操作速度能提升1.67倍。此外,在儲存細胞陣列上的動態功率消耗也可減少70%。
Register file is the kernel storage element on the modern microprocessor and consumes significant amount of power. We propose a novel storage cell structure which cuts off the leakage path to reduce leakage power consumption. This thesis designs and implements 4-write-port, 8-read-port 32 x 32-bit register files by using TSMC 0.18μm CMOS technology for different storage cell structures to evaluate the performance in speed and power consumption. The proposed storage cell built in the multi-port register file architecture demonstrates significant improvement in power consumption. The simulated results show that the leakage power in the storage cell array is reduced by 22% while comparing with the conventional storage cell structure. Using our storage cell, the operating speed in data writing period can be improved by 1.67X. Moreover, the dynamic power consumption can be reduced by 70% in the storage cell array.
[1] S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedinger, T. J. Sullivan, T. Grutkowski, “The implementation of the Itanium 2 microprocessor,” IEEE J. Solid-State Circuits, vol. 37, no 11, pp. 1448-1460, Nov. 2002.
[2] J. Scott, L. H. Lee, J. Arends, B. Moyer,”Designing the low-power M‧CORETM architecture,” Proc. IEEE Power Driven Micro architecture Workshop, pp. 145-150, June 1998.
[3] R. K. Krishnarnurthy, A. Alvandpour, V. De, S. Borkar, “High-performance, low-power, and leakage-tolerance challenges for sub-70 nm microprocessor circuits,” in Proc. 2002 IEEE Custom Integrated Circuits Conf., pp. 125-128.
[4] Zhan Ping Chen, Li Qiong Wei, K. Roy, “On effective IDDQ testing of low-voltage CMOS circuits using leakage control techniques,” IEEE Trans. on VLSI Syst., vol. 9, no 5, pp.718-725, Oct. 2001.
[5] R. X. Gu and M. I. Elmasry, “Power dissipation analysis and optimization of deep submicron CMOS digital circuits”, IEEE J. Solid-State Circuits, vol. 31, pp. 707-713, May 1996.
[6] L. T. Clark, R. Patel and T. S. Beatty, “Managing standby and active mode leakage power in deep sub-micron design,” in 2004 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 274-279.
[7] G. C-F Yeap, “Leakage current in low standby power and high performance devices: trends and challenges,” in 2002 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 22-27.
[8] K. Usami, M. Igarashi, “Low-power design methodology and applications utilizing dual supply voltages,” Proc. Asia and South Pacific Design Automation Conference, pp. 123-128, Jan. 2000.
[9] M. Donno, L. Macchiarulo, A. Macii, E. Macii, M. Poncino, “Enhanced clustered voltage scaling for low power,” Proc. 12th ACM Great Lakes Symposium on VLSI, Apr. 2002.
[10] M. Igarashi, et al, “A low-power design method using multiple supply voltages,” in 1997 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 36-41.
[11] N. Chabini, I. Chabini, E. M. Aboulhamid, Y. Savaria, “Methods for minimizing dynamic power consumption in synchronous designs with multiple supply voltages,” IEEE Trans. Computer-Aided Design, vol. 22, no 3, pp. 346-351, Mar. 2003.
[12] K. Suhwan, S. V. Kosonocky, D. R. Knebel, K. Stawiasz, “Understanding and minimizing ground bounce during mode transition of power gating structures,” in 2003 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 22-25.
[13] Z.Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, P. Bose, “Microarchitectural techniques for power gating of execution units,” in 2004 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 32-37.
[14] D. Garrett, M. Stan, A. Dean, “Challenges in clock gating for a low power ASIC methodology,” in 1999 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 176-181.
[15] A. Keshavarzi, K. Roy, C. F. Hawkins, “Intrinsic leakage in low power deep submicron CMOS ICs,” Proc. Int. Test Conf., pp. 146-155, Nov. 1997.
[16] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, J. Yamada, “A 1-V high-speed MTCMOS circuit scheme for power-down application circuits,” IEEE J. Solid-State Circuits, vol. 32, no 6, pp. 861-869, June 1997.
[17] Hyo-Sig Won, Kyo-Sun Kim, Kwang-Ok Jeong, Ki-Tae Park, Kyu-Myung Choi, Jeong-Taek Kong, “An MTCMOS design methodology and its application to mobile computing,” in 2003 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 110-115.
[18] Hyunski Im, T. Inukai, H. Gomyo, T. Hiramoto, T. Sakurai, “VTCMOS characteristics and its optimum conditions predicted by compact analytical model,” in 2001 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 123-128.
[19] T. Kuroda, “Optimum and control of VDD and VTH for low-power, high-speed CMOS design,” Proc. Int. Conf. Computer-Aided Design, pp. 28-34, Nov. 2002.
[20] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of stack effect and its application for leakage reduction,” in 2001 IEEE Int. Symp. Low Power Electron. Design, Dig. Tech. Papers, pp. 195-200.
[21] V. C. Hamacher, Z. G. Vranesic, S. G. Zaky. Computer Organization. McGraw Hill, 1996.
[22] M. Golden, H. Partovi, “A 500 MHz, write-bypassed, 88-entry, 90-bit register file,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 105-108, June 1999.
[23] E. S. Fetzer, J. T. Orton, “A fully-bypassed 6-issue integer datapath and register file on an Itanium microprocessor,” in 2002 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, vol. 1, pp. 420-478.
[24] C. Asato, “A 14-port 3.8-ns 116-word 64-b read-renaming register file,” IEEE J. Solid-State Circuits, vol. 30, no 11, pp. 1254-1258, Nov. 1995.
[25] R. L. Franch, J. Ji, C. L. Chen, “A 640-ps, 0.25-um CMOS, 16X64b three-port register file,” IEEE J. Solid-State Circuits, vol. 32, issue 8, pp. 1288-1292, Aug. 1997.
[26] N. Tzartzanis, W. W. Walker, h. Nguyen, A. Inoue, “A 34 words x 64b 10R/6W write-through self-timed dual-supply- voltage register file,” in 2002 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, vol. 2, pp. 338-537.
[27] R. K. Krishnamurthy, A. Alvandpour, G. Balamurugan, N. R. Shanbhag, K. Soumyanath, S. Y. Borkar, “A 130-nm 6-GHz 256 X 32 bit leakage-tolerant register file,” IEEE J. Solid-State Circuits, vol. 37, no 5, pp. 624-632, May 2002.
[28] N. Tzartzanis, W. W. Walker, “A differential current-mode sensing method for high-noise-immunity, single-ended register files,” in 2004 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, vol. 1, pp. 506-510.
[29] A. Agarwal, K. Roy, S. Hsu, R. K. Krishnamurthy, S. Borkar, “A 90nm 6.5GHz 256X64b dual supply register file with split decoder scheme,” Symp. VLSI Circuits., Dig. Tech. Papers, pp. 386-387, June 2004.
[30] Wang Fang, Jia Song, Ji Li Jiu, “Locally self-resetting CMOS in multi-port register file design,” Proc. International Conference on Solid-State and Integrated Circuits Technolog, vol. 3, pp. 1629-1632, Oct. 2004.
[31] Wang Fang, Ji Li Jiu, “Design of high speed 2write/6read eight-port register file,” Proc. International Conference on ASIC, vol. 1, pp. 498-501, Oct. 2003.
[32] Xue-mei Zhao, Yi-zheng Ye, “Structure configuration of low power register file using energy model,” Proc. IEEE Asia-Pacific Conference on ASIC, pp. 41-44, Aug. 2002.
[33] E. Seevinck, F. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. 22, pp. 748–754, Oct. 1987.
[34] J. Lohstroh, E. Seevinck, and A. Albicki, “Wort-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE J. Solid-State Circuits, vol. SC-22, no. 1, pp. 57-64, Feb. 1987.
[35] A. J. Bhavnagarwala, Xing-hai Tang, J. D. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State Circuits, vol. 36, no 4, pp. 658-665, Apr. 2001.
[36] K. Flautner, Nam Sung Kim, S. Martin, D. Blaauw, T. Mudge, “Drowsy caches: simple techniques for reducing leakage power,” Proc. Annual International Symposium on Computer Architecture, pp. 148-157, May 2002.
[37] N. Azizi, A. Moshovos, F. N. Najm, “Low-leakage asymmetric-cell SRAM,” in 2002 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, pp. 48-51.
[38] C. H. Kim, K. Roy, “Dynamic Vt SRAM: A leakage tolerant cache memory for low voltage microprocessors,” in 2002 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, pp. 251-254.
[39] M. Power, Se-hyum Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, ”Gated-Vdd: A circuit technique to reduce leakage in deep-submicron cache memories,” in 2000 IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, pp. 90-95.
[40] A. Agarwal, Hai Li, K. Roy, “DRG-Cache: a data retention gated-ground cache for low power,” Proc. Conf. Design Automat., pp. 473-478, Jun. 2002.
[41] Wei Hwang, R. V. Joshi, W. H. Henkels, “A 500Mhz 32-word x 64-bit eight-port self-resetting CMOS register file,” IEEE J. Solid-State Circuits, vol. 34, issue 1, pp. 56-67, Jan. 1999.
[42] Y. Ikeda, M. Sumita, “A 32-bit 64-word 9-read, 7-write ported, noise and process variation-tolerant and wide-voltage-range-operative register file using 130 nm technology,” Proc. IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pp. 164-167, Aug. 2004.
[43] B. S. Amrutur, M. A. Horowitz, “Fast low-power decoders for RAMs,” IEEE J. Solid-State Circuits, vol. 36, no 10, pp. 1506-1515, Oct. 2001.
[44] D. A. Hodges, H. G. Jackson, R. A. Saleh. Analysis and Design of Digital Integrated Circuits. McGrawHill, 2004.
[45] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. 19, pp. 468-473, Aug. 1984.
[46] T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, “A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,” IEEE J. Solid-State Circuits, vol. 28, no 4, pp. 523-527, Apr. 1993.
[47] B. Wicht, T. Nirschl, D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no 7, pp. 1148-1158, July 2004.
[48] Hong-Yi Huang, Yuan-Hua Chu, “Unbalanced current latch sense amplifier for low-power high-speed PLD’s,” in Proc. 1996 Int. Symp. Circuits and Syst., vol. 4, pp. 193-196.
[49] B. S. Amrutur, M. A. Horowitz, “A replica technique for wordline and sense control in low-power SRAM’s,” IEEE J. Solid-State Circuits, vol. 33, no 8, pp. 1208-1219, Aug. 1998.
[50] P. Dudek, S. Szczepanski, J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no 2, pp. 240-247, Feb. 2000.
[51] H. Nambu, K. Kanetani, K. Yamasaki, K. Higeta, M. Usami, Y. Fujimura, K. Ando, T. Kusunoki, K. Yamaguchi, N. Homma, “A 1.8 ns access, 550 MHz 4.5 Mb CMOS SRAM,” IEEE J. Solid-State Circuits, vol. 33, no. 11, pp. 1650-1658, Nov. 1998.
[52] EverCAD, http://www.evercad.com/