| 研究生: |
陳昱任 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
精細多元銅微合金導線組織與拉伸性質及通電特性研究 A Study on Microstructure, Tensile Properties and Electrical Characteristics of Fine Multi Micro-Alloyed Copper Wires |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 銅微合金導線 、銅基板 、通電循環 、氯化 、打線接合 |
| 外文關鍵詞: | micro-alloyed copper wire, energization cycle test, wire bonding |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在早期封裝產業中主要使用金線作為打線接合材料,然而受到金價高漲的影響,且金線與鋁基板進行接合時容易產生介金屬化合物,促使許多替代材料紛紛被提出,常見的導線有銀線與銅線。銀線雖然具有非常優異的導電性及導熱性,但也容易與鋁基板生成介金屬化合物,且有電遷移的疑慮;銅線除了有良好導電性與導熱性、成本具競爭力等優勢外,銅與鋁形成介金屬化合物的速率也較金及銀低。因此,本研究以銅基導線為主題進行探討。此外,為了將介金屬化合物產生的影響排除,本研究導入銅基板進行實驗,探討銅導線與銅基板打線接合後的可靠度。
本研究對銅線添加微量的金、鈀及鉑,分別形成三元及四元銅微合金導線。金、鈀及鉑等貴金屬的添加可以提升導線的機械性質與化學穩定性,且微量的添加可以避免電阻值大幅提升。因此本研究將藉由機械性質與通電特性比較銅微合金導線在原線材及完成打線接合後的性質差異,並導入氯化試驗評估銅微合金導線之應用可靠度。
機械性質方面,添加微量的合金元素所產生的固溶強化可以提升導線的微硬度及抗拉強度,使銅微合金導線整體的機械性質表現優異。完成打線接合後,銅微合金導線仍有良好的第一銲點抗拉強度,顯示具良好接合可靠度。
通電特性方面,銅微合金導線隨著合金元素添加量上升,電阻值會有提高趨勢。通電循環方面,添加高熔點合金元素如鈀、鉑,可以使銅微合金導線有較好的通電循環表現。完成第一銲點打線接合後,針對兩種不同的電子流方向進行通電,當正極接於線材端,負極接於基板時,電子流經球部傳遞至頸部會發生堵塞現象,大量電子累積在頸部導致電阻值提升,進而使熔斷電流降低。
銅微合金導線經氯化試驗後,氯離子會沿著導線表面的晶界進行侵蝕,抗拉強度與延伸率皆與氯化處理前相近,並無明顯劣化,然而表面的侵蝕會導致通電循環壽命下降。
本研究顯示,銅微合金導線不論是原線材或打線接合後,在機械性質及通電特性方面都具有良好的性質。分析第一銲點打線接合,評估不同電子流方向對於銅微合金導線與銅基板之間造成的影響,可提供封裝工業應用參考。
In addition to the advantages of good electrical and thermal conductivity, and cost-competitiveness of copper wires, the rate of bonding copper wires and aluminum substrates to form intermetallic compounds is also lower than that of gold and silver. In this study, copper-based wires are used as materials for discussion. In order to eliminate the influence of intermetallic compounds on the bonding surface, copper substrates are introduced to investigate the reliability of copper wires and copper substrates after wire bonding. Copper wires are added with trace amounts of gold, palladium and platinum to form ternary and quaternary micro-alloyed copper wires, respectively. The addition of precious metals such as gold, palladium and platinum can improve the mechanical properties and chemical stability of the wire, and a small amount of addition can avoid a significant increase in the resistance value. Studies have shown that micro-alloyed copper wires have good properties in terms of mechanical properties and electrical properties, whether they are pure or wire-bonded. Through the bonding technology of the first solder joint and the second solder joint, the metallurgical behavior between the micro-alloyed copper wire and the copper substrate in different electron flow directions is clarified, and the relevant data can provide reference for packaging industry applications.
[1] G. G. Harman, Wire Bonding in Microelectronics, 3rd ed. McGraw-Hill, 2010.
[2] Y. H. Tian, C. Q. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, "Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature", Journal of Materials Processing Technology, 208(1), pp. 179-186, 2008.
[3] J. L. Chen and Y. C. Lin, "A New Approach in Free Air Ball Formation Process Parameters Analysis", IEEE Transactions on Electronics Packaging Manufacturing, 23(2), pp. 116-122, 2000.
[4] H. K. Charles, "Advanced Wire Bonding Technology: Materials, Methods, and Testing". In D. Lu, C. Wong (eds) Materials for Advanced Packaging, pp.131-198, Springer, Cham, 2017.
[5] J. Krzanowski and N. Murdeshwar, "Deformation and Bonding Processes in Aluminum Ultrasonic Wire Wedge Bonding", Journal of Electronic Materials, 19(9), pp. 919-928, 1990.
[6] I. Qin, A. Shah, C. Huynh and M. Meyer, "Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 573-578, 2009.
[7] B. Langenecker, "Effects of Ultrasound on Deformation Characteristics of Metals", IEEE Transactions on Sonics and Ultrasonics, 13(1), pp. 1-8, 1966.
[8] S. Murali, N. Srikanth, Y. M. Wong and C. J. Vath, "Fundamentals of Thermo-sonic Copper Wire Bonding in Microelectronics Packaging", Journal of Materials Science, 42(2), pp. 615-623, 2007.
[9] H. Zhang, F. Wang, D. Zhang, L. Wang, Y. Hou, T. Xi, "A New Automatic Resonance Frequency Tracking Method For Piezoelectric Ultrasonic Transducers Used in Thermosonic Wire Bonding", Sensors and Actuators A: Physical, 235, pp. 140-150, 2015.
[10] P. Liu, Li. Tong, J. Wang, L. Shi, H. Tang, "Challenges and Developments of Copper Wire Bonding Technology", Microelectronics Reliability, 52( 6), pp. 1092-1098, 2012.
[11] S. Kaimori, T. Nonaka and A. Mizoguchi, "The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating", IEEE Transactions on Advanced Packaging, 29(2), pp. 227-231, 2006.
[12] A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, "Effect of Gas Type and Flow Rate on Cu Free Air Ball Formation in Thermosonic Wire Bonding", Microelectronics Reliability, 51, pp. 43-52, 2011.
[13] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang and J. T. Moon, "Thermosonic Ball Bonding Behavior and Reliability Study of Ag Alloy Wire," Electronic Packaging Technology Conference (EPTC) on IEEE, pp. 254-259, 2013.
[14] P. S. Chauhan, A. Choubey, Z. Zhong, M. G. Pecht. Copper Wire Bonding, Springer, pp. 39-40, 2014.
[15] 林宜璋,不同退火條件之銅導線經放電結球前後之機械性質與織構分析,國立成功大學材料科學與工程系碩士論文,民國九十六年。
[16] 鄭傑勻,濺鍍金之銅導線成球性及打線接合可靠度研究,成功大學材料科學及工程學系碩士論文,民國一百零四年七月。
[17] Z. W. Zhong, "Overview of Wire Bonding Using Copper Wire or Insulated Wire", Microelectronics Reliability, 51, pp. 4-12, 2011.
[18] C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, "Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force", Microelectronic Engineering, 86, pp. 2094-2103, 2009.
[19] A.B.Y. Lim, A.C.K. Chang, O. Yauw, B. Chylak, C.L. Gan, Z.Chen, "Ultra-Fine Pitch Palladium-Coated Copper Wire Bonding: Effect of Bonding Parameters", Microelectronics Reliability, 54(11), pp. 2555-2563, 2014.
[20] G. Hu, "Comparison of Copper, Silver and Gold Wire Bonding on Interconnect Metallization", 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, pp. 529-533, 2012.
[21] 朱冠銘,具奈米鍍鋅層精細鋁矽導線之放電成球機制及打線接合可靠度研究,成功大學材料科學及工程學系學位論文,民國一百零五年。
[22] H. Xu, C. Liu, V. V. Silberschmidtb, S. S. Pramanac, T. J. White, Z. Chen, and V. L. Acoff, "Intermetallic Phase Transformations in Au-Al Wire Bonds", Intermetallics, 19, pp. 1808-1816, 2011.
[23] C. D. Breach and F. Wulff, "New Observations on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al", Microelectronics Reliability, 44, pp. 973-981, 2004.
[24] M. Guerdane, "Self-Diffusion in Intermetallic Au4Al: Molecular Dynamics Study Down to Temperatures Relevant to Wire Bonding", Computational Materials Science, 29, pp. 13-23, 2017.
[25] Y. C. Jang, S. Park, H. D. Kim, Y. C. Ko, K. W. Koo, M. R. Choi, H. G. Kim, N. K. Cho, I.T. Kang, J. H. Yee, and S. H. Lim, "Study of Intermetallic Compound Growth and Failure Mechanisms in Long Term Reliability of Silver Bonding Wire", 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, pp. 704-708, 2014.
[26] Y. H. Wu, F. Y. Hung, T. S. Lui and L. H. Chen, " Study of Wire Bonding Reliability of Ag-Pd-Au Alloy Wire with Flash-Gold after Chlorination and Sulfidation", Microelectronics Reliability, 99, pp. 186-196, 2019.
[27] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Chen, "Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure", Advances in Materials Science and Engineering, 2014.
[28] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, "Reliability Study of Low Cost Alternative Ag bonding Wire with Various Bond Pad Materials", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 851-857, 2009.
[29] E. Sancaktar, P. Rajput and A. Khanolkar, "Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix", IEEE Transactions on Components and Packaging Technologies, 28(4), pp. 771-780, 2005.
[30] N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, "Effect of Wire Purity on Copper Wire Bonding", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 755-759, 2007.
[31] Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, "Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding", Microelectronic Engineering, 84(2), pp. 368-374, 2007.
[32] P. Chauhan, Z.W. Zhong, and M. Pecht, "Copper Wire Bonding Concerns and Best Practices", Journal of Electronic Materials, 42(8), pp. 2415-2434, 2013.
[33] C. Lu, "The Challenges of Copper Wire Bonding", International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT) on IEEE, pp. 1-4, 2010.
[34] 張哲豪,鍍金鈀層精細銅導線氯化及通電破壞機制研究,成功大學材料科學及工程學系碩士論文,民國一百零九年。
[35] 林郁哲,精細銅微合金導線顯微組織與拉伸機械及通電性質研究,成功大學材料科學及工程學系碩士論文,民國一百一十年。
[36] M. Eto, N. Araki, T. Yamada, R. Klengel, S. Klengel, M. Petzold, M. Sugiyama, and S. Fujimoto, "Effects of alloying elements in high reliability copper wire bond material for high temperature applications", Microelectronics Reliability on Elsevier, volume 114, article 113819, 2020.
[37] T. K. Chee, K. S. Theen and T. M. Sin, "Cu-Cu wire bonding challenges on MOSFET wafer technology," 15th Electronics Packaging Technology Conference (EPTC 2013) on IEEE, pp. 282-287, 2013.
[38] H. W. Hsueh, F. Y. Hung and T. S. Lui, "A Study on Electromigration-Inducing Intergranular Fracture of Fine Silver Alloy Wires", Applied Physics Letters, volume 110, issue 3, id.031902, 2017.
[39] M. Braunovic and N. Alexandrov, "Intermetallic Compounds at Aluminum-to-Copper Electrical Interfaces: Effect of Temperature and Electric Current", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(1), pp. 78-85, 1994.
[40] E. Salahinejad, R. E. Farsani, and L. Tayebi, "Synergistic Galvanic-Pitting Corrosion of Copper Electrical Pads Treated with Electroless Nickel-Phosphorus/Immersion Gold Surface Finish", Engineering Failure Analysis, 77, pp. 138-145, 2017.
[41] C. S. Lee, T. Tran, D. Boyne, L. Higgins, and A. Mawer, "Copper versus Palladium Coated Copper Wire Process and Reliability Differences", 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 1539-1548, 2014.
校內:2027-06-27公開