簡易檢索 / 詳目顯示

研究生: 賴信安
Lai, Shin-An
論文名稱: 空間自由定位充電之近無指向性無線電能傳輸研究
Study on Quasi-Omnidirectional Wireless Power Transfer for Spatial Free-Positioning Charging
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 無線電能傳輸系統四線圈正交諧振線圈空間自由定位充電近無指向性
外文關鍵詞: Wireless power transfer system, Four-Coil, Orthogonal resonance coil, Spatial free positioning charging, Quasi-Omnidirectional
相關次數: 點閱:130下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在實現空間中全方位無線電能傳輸之能力。研製近無指向性無線電能傳輸系統,以提供位於該空間中環形區域內所有電子設備電能供給。為了達成近乎全方位傳能之能力,本論文提出正交結構的Tx端線圈,並結合四線圈架構以提升整體系統無線傳輸距離。在Rx端線圈設計部分採環形線圈,以降低耦合結構厚度,提高實用性。文中使用四線圈等效電路模型分析其諧振特性,並搭配電路模擬軟體Simplis驗證其可行性。透過數學建模方式了解正交線圈於空間中所產生之磁場,運用磁場模擬軟體協助了解其磁場分布情形,且分析Tx端饋電線圈與第一共振線圈擺放角度所造成之影響關係。最後經由實驗量測得知,本文所研製之近無指向性無線電能傳輸系統能對於幾乎整個環形空間內所有Rx端傳送能量,並且在間距40 cm內傳輸效率幾乎都能保持在30 %以上。

    This thesis is aimed to realize nearly omnidirectional wireless power transfer capability to spatial free positioning charging. The quasi-omnidirectional wireless power transfer system is designed to provide power for all equipment located in the annular space. In order to achieve omnidirectional power transfer capability, the orthogonal Tx coils is proposed, combined with a four-coil structure to improve the transmission distance. Ring coil structure is adopted in the Rx coils in order to reduce the thickness of the coupled structure and improve practicability. The characteristics of resonant circuit are analyzed by using a four-coil equivalent circuit and circuit simulation software (Simplis). We used mathematical modeling and magnetic field simulation software to analyze the magnetic field generated by the orthogonal coil and the angle relationship between the transmit coil and the primary resonant coil. Finally, experimental results show that the quasi-omnidirectional system proposed in this thesis can transmit energy to all receive coil in almost entire annular space and the transmission efficiency can be maintained at more than 30% at distance of 40 cm.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 4 1-3 研究方法 9 1-4 論文大綱 10 第二章 無線電能傳輸原理與特性分析 12 2-1 前言 12 2-2 電磁感應基本原理 12 2-3 感應線圈之非理想效應 15 2-3-1集膚效應 15 2-3-2近接效應 18 2-4 感應耦合結構等效模型 19 2-4-1鬆耦合變壓器模型 19 2-4-2感應耦合結構之互感與耦合係數 20 2-5 感應耦合架構分析 22 2-5-1雙線圈式感應耦合架構 22 2-5-2三線圈式感應耦合架構 24 2-5-3四線圈式共振耦合架構 25 2-6 系統整體架構 27 第三章 四線圈耦合結構研製與分析 29 3-1 前言 29 3-2 四線圈等效電路模型分析 29 3-2-1反射阻抗與諧振電容分析 30 3-2-2傳輸效率分析 33 3-3 Tx線圈設計與分析 35 3-3-1Tx線圈設計與分析 36 3-3-2Tx線圈磁場分布之數學建模與分析 41 3-4 感應耦合線圈結構模擬與分析 44 第四章 無線電能傳輸系統硬體電路 50 4-1 前言 50 4-2 系統整體電路架構 50 4-3 Tx側電路架構 52 4-3-1全橋諧振變流器分析 52 4-3-2全橋諧振變流器驅動電路 57 4-4 Rx側電路架構 58 4-5 四線圈式無線電能傳輸系統設計流程 59 第五章 系統模擬與實驗結果 63 5-1 前言 63 5-2 Simplis電路模擬 63 5-3 系統規格與參數 70 5-4 系統實驗結果與波形量測 72 第六章 結論與未來研究方向 83 6-1 結論 83 6-2 未來研究方向 84 參考資料 85

    [1] 樂羽嘉,“不是幻覺 手機電池續航力真的變差了,” 天下雜誌,2018。Online. Available at: https://www.cw.com.tw/article/5092731.
    [2] Smart home will drive internet of things to 50 billion devices, says strategy analytics. Online. Available at: http://www.strategyanalytics.com.
    [3] D. Rozario, N. A. Azeez, and S. S. Williamson, “Analysis and design of coupling capacitors for contactless capacitive power transfer systems,” in Proc. IEEE Transp. Electrific. Conf. & Expo., 2016, pp. 1-7.
    [4] J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown, “Synchronous generator brushless field excitation and voltage regulation via capacitive coupling through journal bearings,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3317-3326, Jul. 2017.
    [5] D. C. Ludois, J. K. Reed and K. Hanson, “Capacitive power transfer for rotor field current in synchronous machines,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4638-4645, Nov. 2012.
    [6] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circularmagnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Apr. 2011.
    [7] T. Misawa, T. Takura, F. Sato, T. Sato and H. Matsuki, “Parameter design for high-efficiency contactless power transmission under low-impedance load,” IEEE Trans.Magn., vol. 49, no. 7, pp. 4164-4167, Jul. 2013.
    [8] Z. Zhang and K. T. Chau, “Homogeneous wireless power transfer for move-and-charge,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6213-6220, Nov. 2015.
    [9] B. Minnaert and N. Stevens, “Maximizing the power transfer for a mixed inductive and capacitive wireless power transfer system,” in Proc. IEEE WPTC, 2018, pp. 1-4.
    [10] B. Luo, T. Ling, L. Guo, R. Mai, and Z. He, “Analysis and design of hybrid inductive and capacitive wireless power transfer system,” in Proc. IEEE APEC, 2019, pp. 1-4.
    [11] B. Luo, T. Ling, L. Guo, R. Mai, and Z. He, “Analysis and design of hybrid inductive and capacitive wireless power transfer system for Railway Application,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3034-3042, Mar. 2020.
    [12] J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
    [13] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE ICIEA, 2011, pp. 520-525.
    [14] Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. Int. Conf. Autom. Robot. Control Vision, 2010, pp. 85-89.
    [15] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
    [16] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
    [17] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
    [18] P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
    [19] B. Song, J. Shin, S. Lee, S. Shin, Y. Kim, S. Jeon, and G. Jung, “Design of a high power transfer pickup for on-line electric vehicle,” in Proc. Int. Elect. Veh. Conf., 2012, pp. 1-4.
    [20] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Tran. Ind. Appl., vol. 35, no. 4, pp. 884-895, Jul. 1999.
    [21] SAE International Surface Vehicle Recommended Practice, “Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology,” SAE J2954, Nov. 2017.
    [22] F. Musavi, M. Edington, and W. Eberle, “Wireless power transfer a survey of EV battery charging technologies,” in Proc. IEEE ECCE, 2012, pp. 1804-1810.
    [23] K. Kobayashi, T. Pontefract, Y. Kamiya, and Y. Daisho, “Development and performance evaluation of a non-contact rapid charging Inductive power supply system for electric micro-bus,” in Proc. Veh. Power Propulsion Conf., 2011, pp 1-6.
    [24] M. Treffers, “History current status and future of the wireless power consortium and the Qi interface specification,” IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 28-31, May 2015.
    [25] X. Liu, “Qi standard wireless power transfer technology development toward spatial freedom,” IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 32-39, May 2015.
    [26] D. van Wageningen, T. Staring, “The Qi wireless power standard”, in Proc. 14th EPE/PEMC, 2010, pp. S15-25-S15-32.

    [27] Q. Zhu, Y. Guo, L. Wang, C. Liao, and F. Li, “Improving the misalignment tolerance of wireless charging system by optimizing the compensate capacitor,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4832- 4836, Aug. 2015.
    [28] C. Zheng, H. Ma, J. S. Lai, and L. Zhang, “Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6108-6119, Nov. 2015.
    [29] K. Fotopoulou and B. W. Flynn, “Wireless power transfer in loosely coupled links: coil misalignment model,” IEEE Trans. Magn., vol. 47, no. 2, pp. 416-430, Feb. 2011.
    [30] I. Cortes and W. j. Kim, “Lateral position error reduction using misalignment-sensing coils in inductive power transfer systems,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 2, pp. 875-882, Apr. 2018.
    [31] “無線發射器創新設計推動Qi標準進展,” EET Taiwan, 2019。Online. Available at: https://www.eettaiwan.com/news/article/2019
    1021NT51-innovative-wireless-transmitter-design-advances-qi-standard.
    [32] “無線充電套件打造超小體積充電器,” EET Taiwan, 2018。Online. Available at: https://www.eettaiwan.com/news/article/20180911NP22.
    [33] “無線充電創造「無限」未來,” EET Taiwan, 2017年。Online. Available at: https://www.eettaiwan.com/20170816nt22-partnering-wireless-future.
    [34] T. Sasatani, M. J. Chabalko, Y. Kawahara, and A. P. Sample, “Multimode quasistatic cavity resonators for wireless power transfer,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2746-2749, Aug. 2017.
    [35] J. Feng, Q. Li, F. C. Lee, and Minfan Fu, “Transmitter coils design for free-positioning omnidirectional wireless power transfer system,” IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4656-4664, Aug. 2019.
    [36] W. Zhang, T. Zhang, Q. Guo, L. Shao, N. Zhang, X. Jin, and J. Yang, “High-efficiency wireless power transfer system for 3D, unstationary free-positioning and multi object charging,” IET Elect. Power Appl., vol. 12, no. 5, pp. 658-665, Apr. 2018.
    [37] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-I: two-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 625- 633, Jan. 2017.
    [38] D. Lin, C. Zhang, and S. Y. R. Hui, “Power and efficiency of 2-D omni-directional wireless power transfer systems,” in Proc. IEEE ECCE, 2015, pp. 4951-4958.
    [39] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-II three-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 613-624, Jan. 2017.
    [40] Q. Zhu, M. Su, Y. Sun, W. Tang, and A. P. Hu, “Field orientation based on current amplitude and phase angle control for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4758-4770, Jun. 2018.
    [41] M. Su, Z. Liu, Q. Zhu, and A. P. Hu, “Study of maximum power delivery to movable device in omnidirectional wireless power transfer system,” IEEE Access, vol. 6, pp. 76153-76164, Nov. 2018.
    [42] H. Han, Z. Mao, Q. Zhu, M. Su, and A. P. Hu, “A 3D wireless charging cylinder with stable rotating magnetic field for multi- load application,” IEEE Access, vol. 7, pp. 35981-35997, Apr. 2019.
    [43] N. H. Van and C. Seo, “Analytical and Experimental Investigations of Omnidirectional Wireless Power Transfer Using a Cubic Transmitter,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1358-1366, Feb. 2018.

    [44] B. H. Choi, E. S. Lee., Y. H. Sohn, G. C. Jang, and C. T. Rim, “Six degrees of freedom mobile inductive power transfer by crossed dipole Tx and Rx coils,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3252–3272, Apr. 2016.
    [45] E. S. Lee, Y. H. Sohn, B. G. Choi, S. H. Han, and C. T. Rim, “A Modularized IPT with magnetic shielding for a wide-range ubiquitous Wi-power zone,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9669-9690, Nov. 2018.
    [46] Z. Dai, Z. Fang, H. Huang, Y. He, and J. Wang, ‘‘Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system,’’ IEEE Access, vol. 6, pp. 19287-19294, 2018.
    [47] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer,” IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4500-4511, Sep. 2014.
    [48] International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines for limiting exposure to time-varying electric magnetic and electromagnetic fields (1 Hz to 100 kHz),” Health Phys., vol. 99, no. 6, pp. 818-836, Dec. 2010.
    [49] International Commission on Non-Ionizing Radiation Protection, “ICNIRP guidelines for limiting exposure to time-varying electric magnetic and electromagnetic fields (up to 300GHz),” Health Phys., vol. 74, no. 4, pp. 494-522, 1998.
    [50] T. Kan, F. Lu, T. D. Nguyen, P. P. Mercier, and C. C. Mi, “Integrated coil design for EV wireless charging systems using LCC compensation topology,’’ IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9231-9241, Nov. 2018.

    [51] T. Kan, F. Lu, T. D. Nguyen, P. P. Mercier, and C. C. Mi, “Integrated coil design for EV wireless charging systems using LCC compensation topology,’’ IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9231-9241, Nov. 2018.
    [52] C. Xiao, D. Cheng, and K. Wei, “An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation,’’ IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4894-4905, Jun. 2018.
    [53] H. Hao, G. A. Covic, and J. T. Boys, ‘‘An approximate dynamic model of LCL-T-based inductive power transfer power supplies,’’ IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554-5567, Oct. 2014.
    [54] J. Zhang, X. Yuan, and C. Wang, “A study of three-coil magnetically coupled resonators for wireless power transfer,” in Proc. IEEE IWS, 2015, pp. 1-4.
    [55] S. Moon, B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil or high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
    [56] Y. Zhang, T. Lu, and Z. Zhao, “Reducing the impact of source internal resistance by source coil in resonant wireless power transfer,” in Proc. IEEE ECCE, 2014, pp. 845-850.
    [57] W. Zhong, C. Zhang, X. Liu, and S. Y. Ron Hui, “A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 933-942, Feb. 2015.
    [58] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
    [59] 謝志仁,應用三線圈式多單元耦合結構於非接觸式饋電系統之研究,國立成功大學電機工程學系碩士論文,2020年。
    [60] K. B. Sai Kiran, M. Kumari, R. K. Behera, O. Ojo, and A. Iqbal, “Analysis and experimental verification of three-coil inductive resonant coupled wireless power transfer system,” in Proc. IEEE National Power Electron. Conf., 2017, pp. 84-89.
    [61] S. Huang, Z. Li, Y. Li, X. Yuan, and S. Cheng, “A comparative study between novel and conventional four-resonator coil structures in wireless power transfer,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.
    [62] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
    [63] 賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
    [64] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015年。
    [65] 林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016年。
    [66] 王麒豪,應用四線圈式多單元矩陣型結構於無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2018年。
    [67] 曾昱叡,具蜂巢式六角形結構之四線圈式無線電能傳輸系統,國立成功大學電機工程學系碩士論文,2018年。
    [68] S. Huang, Z. Li, and K. Lu, “Frequency splitting suppression method for four-coil wireless power transfer system,” IET Power Electron., vol. 9, no. 15, pp. 2859-2864, Dec. 2016.

    [69] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
    [70] W. Q. Niu, J. X. Chu, W. Gu, and A. D. Shen, “Exact analysis of frequency splitting phenomena of contactless power transfer systems,” IEEE Trans. Circuits Syst., vol. 60, no. 6, pp. 1670-1677, Nov. 2013.
    [71] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
    [72] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Jul. 2014.
    [73] F. W. Grover, Inductance Calculations-Dover Edition, NY, USA: Dover, 2004.

    下載圖示 校內:2023-08-13公開
    校外:2023-08-13公開
    QR CODE