| 研究生: |
張祐 Chang, Yu |
|---|---|
| 論文名稱: |
利用雷射退火改善有機異質接面太陽能電池之研究 On the Improvement of Organic Bulk Heterojunction Solar Cells Using Laser Annealing |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 雷射 、退火 、聚-3己基塞吩 、有機異質接面太陽能電池 |
| 外文關鍵詞: | Laser, Annealing, P3HT, Organic bulk heterojunction solar cell |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用不同的退火條件製作有機高分子太陽能電池,尤其是利用雷射退火處理元件。有機材料P3HT的吸收光譜範圍座落於綠光波段,所以本論文利用波長532奈米的綠光雷射當做雷射源。本論文的重點是針對雷射的光處理而非熱處理,因此實驗所使用的雷射瓦數只有50 mW。根據實驗結果,雷射退火不但可增加P3HT側鏈的π電子傳輸,亦可增加高分子鏈的共軛長度,進而提升分子的結晶性。本論文中最佳元件製備條件為濃度4wt%,退火條件是同時使用雷射退火及熱退火(130℃)五分鐘,其元件特性之短路電流為8.48 mA/cm2、開路電壓為0.61 V、理想因子為0.55%,效率可達2.83%。將本實驗與熱退火(大部分研究團隊所採用的)做比較後,本論文最重要的特色是發現雷射退火可降低一半的製程時間。
In this thesis, we fabricated the organic polymer solar cells with different annealing condition, especially using laser annealing. We used 532nm green laser as the laser annealing source because the maximum intensity of P3HT absorption spectrum is located at the range of green light. The power of laser is only 50mW as we focused on the light treatment. The experimental results demonstrated laser can not only significantly enhance the π-electron transport in the interchain associated with the hexyl chains but also increase the conjugation length of the polymer chain by laser annealing. The optimal device is 4wt% concentration treated with laser and thermal annealing simultaneously for 5min, the short circuit current density (JSC) is 8.48mA/cm2, open circuit voltage (VOC) is 0.61V, fill factor (FF) is 0.55, and power conversion efficiency (PCE) is 2.83%. The most important characteristic of this thesis is that we reduced half of the processing time by laser annealing when compared with thermal annealing.
1.E. Becquerel., “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Comptes Rendus Academy of Science 9, 145 (1839).
2.H. Spanggaard, and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics”, Solar Energy Materials and Solar Cells 83, 125 (2004).
3.H. Hoegel. “On photoelectric effects in polymers and their sensitization by dopant”, J. Chem. Phys. 69, 755 (1965)
4.B. R. Weinberger, M. Akhtar, and S. C. Gau, “Polyacetylene photovoltaic devices”, Synth. Met. 4, 187 (1982).
5.C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183 (1986).
6.http://www.ieo.nctu.edu.tw/paper/viewtopic.php?CID=57&Topic_ID=78
7.G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity”, Appl. Phys. Lett. 64, 3422 (1994).
8.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Mater. 4, 864 (2005).
9.W. L. Ma, C. Y. Yang, X. Gong, K. G. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617 (2005).
10.J. Hecht, “Short history of laser development”, Opt. Eng. 49, 091002 (2010).
11.R Ladenburg, “Research on the anomalous dispersion of gases”, Z. Phys. 48, 15 (1928).
12.J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3”, Phys. Rev. 95, 282 (1954).
13.G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J. Appl. Phys. 98, 043704 (2005).
14.Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Appl. Phys. Lett. 86, 063502 (2005).
15.M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends”, Appl. Phys. Lett. 87, 083506 (2005).
16.M. Al-lbrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene”, Appl. Phys. Lett. 86, 201120 (2005).
17.Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Solvent Vapor-Induced Self Assembly and its Influence on Optoelectronic Conversion of Poly(3-hexylthiophene): Methanofullerene Bulk Heterojunction Photovoltaic Cells”, J. Appl. Polym. Sci. 111, 1799 (2009).
18.T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, “Effect of UV-ozone treatment on ITO and post-annealing on the performance of organic solar cells”, Synthetic Met. 159, 754 (2009).
19.C. J. Ko, Y. K. Lin, and F. C. Chen, “Microwave annealing of polymer photovoltaic devices”, Adv. Mater. 19, 3520 (2007).
20.H. Flugge, H. Schmidt, T. Riedl, S. Schmale, T. Rabe, J. Fahlbusch, M. Danilov, H. Spieker, J. Schobel, and W. Kowalsky, “Microwave annealing of polymer solar cells with various transparent anode materials”, Appl. Phys. Lett. 97, 123306 (2010).
21.E. W. Okraku, M. C. Gupta, and K. D. Wright, “Pulsed laser annealing of P3HT/PCBM organic solar cells”, Sol. Energy Mat. Sol. Cells 94, 2013 (2010).
22.T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, and C. J. Brabec, “Correlation between structural and optical properties of composite polymer fullerene films for organic solar cells”, Adv. Funct. Mater. 15, 1193 (2005).
23.X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells”, Nano. Lett. 5, 579 (2005).
24.A. J. Moulé and K. Meerholz, “Controlling morphology in polymer-fullerene mixtures”, Adv. Mater. 20, 240 (2008).
25.J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, and K. Cho, “Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells”, J. Phys. Chem. C 113, 17579 (2009).
26.S. K. Park, Y. H. Kim, and J. I. Han, “Effect of Annealing Treatment and Surface Morphology on Power Conversion in Organic Photovoltaics”, Jpn. J. Appl. Phys. 48, 081505 (2009).
27.K. Kubota, T. Kato, and C. Adachi, “Control of the molecular orientation of a 2,2(')-bithiophene-9,9-dioctylfluorene copolymer by laser annealing and subsequent enhancement of the field effect transistor characteristics”, Appl. Phys. Lett. 95, 073303 (2009).
28.F. H. Wu, “The study of organic solar cell doped with metallic nanoparticle”, National Sun Yat-Sen University (2009)
29.U. Rauscher, H. B.assler, D.D.C. Bradley, and M. Hennecke, “Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene) ”, Phys. Rev. B 42, 9830 (1990).
30.E. L. Frankevich, A.A. Lymarev, I. Sokolik, F.E. Karasz, S. Blumstengel, R.H. Baughman, and H.H. Horhȍld, “Polaron-pair generation in poly(phenylene vinylenes)”, Phys. Rev. B 46, 9320 (1992).
31.S. M. Sze, “Semiconductor devices: physics and technology-2nd ed”, John Wiley and Sons, 1985.
32.J. C. Bernede, “Organic photovoltaic cell: history, principle and techniques”, J. Chil. Chem. Soc. 53, 1549 (2008).
33.P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics”, Sol. Energy Mat. Sol. Cells 90, 2150 (2006).
34.J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances”, Appl. Phys. Lett. 84, 3013 (2004).
35.V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J. Appl. Phys. 94, 6849 (2003).
36.T. Yamanari, T. Taima, J. Sakai, and K. Saito, “Origin of the open circuit voltage of plastic solar cells”, Adv. Funct. Mater. 11, 374 (2001).
37.S. R. Forrest, “The limits to organic photovoltaic cell efficiency”, MRS Bulletin 30, 28 (2005).
38.K. H. Hsiao, “Study of silver oxide anode of single donor-acceptor heterojunction organic photovoltaic cell”, National Cheng Kung University (2009).
39.K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes”, Adv. Mater. 19, 441 (2007).
40.L. S. C. Pingree, B. A. MacLeod, D. S. Ginger, “The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport”, J. Phys. Chem. C 21, 7922 (2008).
41.http://en.wikipedia.org/wiki/1,2-Dichlorobenzene
42.K. Furukawa, Y. Terasak, H. Ueda, M. Matsumura, “Effect of a plasma treatment of IT0 on the performance of organic electroluminescent devices”, Synthetic Met. 91, 99 (1997).
43.T. Kawai, Y. Maekawa, M. Kusabiraki, “Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants”, Surf. Sci. 601, 5276 (2007).
44.K. P. Kim, A. M. Hussain, D. K. Hwang, S. H. Woo, H. K. Lyu, S. H. Baek, Y. Jang, J. H. Kimy, “Work function modification of indium–tin oxide by surface plasma treatments using different gases”, Jpn. J. Appl. Phys. 48, 021601 (2009).
45.J. G. Jang, S. J. Shin, S. K. Lim, H. J. Chang, S. O. Ryu, Myoung Seon Gong, Jun Yeob Lee, “Effect of plasma treatment of ITO electrode on the characteristics of green OLEDs with Alq¬3-C545T emissive layer”, Mol. Cryst. Liq. Cryst. 498, 274 (2009).
46.Sharma, P. J. Hotchkiss, S. R. Marder, B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes”, J. Appl. Phys. 105, 084507 (2009).
47.G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, Y. Yang, ‘‘Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes”, Adv. Funct. Mater. 17, 1636 (2007).
48.C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett. 80, 1288 (2002).
49.https://www.chem.agilent.com/en-US/Products/Instruments/molecularspectroscopy/uv-vis/pages/photodiode_array_benefits.aspx
50.T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), 9209 (2001).
51.http://140.116.176.21/www/technique/20071112/Raman.pdf
52.http://www.mobot.org/jwcross/spm/notes.htm
53.http://www.ncku.edu.tw/~facility/facility/index.htm
54.Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu, “Carrier mobility of organic semiconductors based on current-voltage characteristics”, J. Appl. Phys. 107, 034506 (2010)
55.M. A. Lampert, P. Mark, “Current injection in solids”, Academic Press: New York (1970).
56.P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect”, J. Phys. D Appl. Phys. 3, 151 (1970).
57.F. Padinger, R. S. Rittberger, and N. S. Sariciftci, ”Effects of Postproduction Treatment on Plastic Solar Cells ”, Adv. Funct. Mater. 13, 85 (2003)
58.X. H. Bao, L. Jiang, Y. Uchida, J. N. Liu, H. Furuhashi, M. Mori, and Y. Uchida, “Morphology control of self-assembled organic film using laser ablation”, The International Conference on Electrical Engineering (2009).
59.C. Y. Yang, C. Soci, D. Moses, A. J. Heeger, “Aligned rrP3HT film: Structural order and transport properties”, Synthetic Met. 155, 639 (2005).
60.B. D. Cullity, “Elements of X-Ray Diffraction”, Addison-Wesley, Reading, MA (1956).
61.T. Erb, S. Raleva, U. Zhokhavets, G. Gobsch, B. Stȕhn, M. Spode, and O. Ambacher, “Structural and optical properties of both pure poly(3-octylthiophene) (P3OT) and P3OT/fullerene films”, Thin Solid Films 450, 97 (2004).
62.K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Inganȁs, R. Feidenhans’l, and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films”, Macromolecules 33, 3120 (2000).
63.T. J. Prosa, M. J. Winokur, J. Moulton, P. Smith, and A. J. Heeger, “X-ray structural studies of poly(3-alkylthiophenes): An example of an inverse comb”, Macromolecules 25, 4364 (1992).
64.M. H. Chang, “Polymer field-effect transistor fabricated by photosensitive polyimide gate dielectrics”, National Cheng Kung University (2006).
65.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature 401, 685 (1999).
66.J. L. Brédas, “Relationship between band gap and bond length alternation in organic conjugated polymers”, J. Chem. Phys. 82, 3808 (1985).
67.V. Shrotriya, J. Y. Ouyang, R. J. Tseng, G. Li, and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films”, Chem. Phys. Lett. 411, 138 (2005).
68.J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-Ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices”, Adv. Funct. Mater. 15, 203 (2005)
校內:2021-12-31公開