| 研究生: |
黃景政 Huang, Ching-Cheng |
|---|---|
| 論文名稱: |
超低溫共燒陶瓷鈷-釩酸鹽系統微波介電特性與化學鍵特性之關聯性分析 Analysis of the Correlation Between Microwave Dielectric Properties and Chemical Bond Characteristics in Ultra-Low Temperature Co-Fired Cobalt-Vanadate Ceramic Systems |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | LTCCs 、ULTCCs 、微波介電特性 、CoV2O6 、Co2V2O7 、P-V-L bond theory 、5G/6G 通訊系統 |
| 外文關鍵詞: | LTCCs, ULTCCs, Microwave dielectric properties, CoV2O6, Co2V2O7, P-V-L bond theory, 5G/6G Communication Systems |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發新型超低溫與低溫共燒微波介電陶瓷,以應對科技的快速進步, 為高速通信應用提供創新的材料選擇,同時響應全球節能減碳的趨勢。第一部分探討 微波介電陶瓷在科技發展與可持續發展中的角色與演變;第二部分介紹開發微波介電 陶瓷的理論基礎,接下來的第三與第四部分則分別研究 CoO-V2O5 系統中的兩種基本 組成——CoV2O6 和 Co2V2O7 陶瓷的微波介電特性與化學鍵之間的關係。這些陶瓷採 用傳統固態法合成,其微波介電特性首次得到系統性的研究。
CoV2O6 陶瓷在 660°C 燒結時呈現 γ 相並且呈現最高的緻密性與最佳的微波介 電特性:εr = 11.6、Q×f = 39,177 GHz、τf = -15 ppm/°C,但在 690 °C 發生相變化,從 γ 相轉變為 α 相,導致介電性能下降。Co2V2O7 陶瓷在 720 °C 呈現最高的晶粒緻密性 並表現出最優異的介電性能:εr = 9.4、Q×f = 88,645 GHz、τf = -37 ppm/°C。值得注意 的是,Co2V2O7 陶瓷的燒結溫度可降低至 660°C,且仍能保持良好的微波介電性能: εr = 7.7、Q×f = 75,887 GHz、τf = -58 ppm/°C。
本研究利用 拉曼光譜與P-V-L 鍵理論分析微波介電特性與化學鍵特性之間的關 係。研究結果顯示相同的在兩種陶瓷的晶格中 V–O 鍵可為主要晶格震動的代表,顯 示 V–O 鍵的含量起到對極化率的關鍵影響。另外,對 CoV2O6 陶瓷以及 Co2V2O7 陶瓷而言,在不同的燒結溫度下,其各自的化學鍵特性的變化量相當微小,與其各自的 外在因素相比其影響可以忽略。然而,當晶格結構改變以及化學鍵的比例改變時,化 學鍵的特性對微波介電的影響則相當顯著。Co2V2O7 的低介電損耗源於 Co–O 鍵提 供的較高晶格能;相較之下,CoV2O6 的燒結溫度較低,這是因為其較高的 V2O5 含 量起到了有效燒結助劑的作用。
這兩種陶瓷均與鋁具有良好的化學相容性,成為低溫共燒陶瓷(LTCCs)和超低 溫共燒陶瓷(ULTCCs)應用的潛力候選材料。它們適用於工作於微波頻率及更高頻 率的器件,為可持續發展與先進通信技術做出重要貢獻。
This study aims to develop novel ultra-low-temperature and low-temperature co-fired microwave dielectric ceramics to address the rapid advancements in technology. These ceramics provide innovative material options for high-speed communication applications while aligning with global energy-saving and carbon-reduction trends. The first section explores the role and evolution of microwave dielectric ceramics in technological and sustainable development. The second section introduces the theoretical foundations for developing microwave dielectric ceramics. The third and fourth sections focus on the relationship between the microwave dielectric properties and chemical bonding characteristics of two fundamental compositions in the CoO-V2O5 system: CoV2O6 and Co2V2O7. These ceramics were synthesized using the traditional solid-state method, and their microwave dielectric properties were systematically investigated for the first time.
CoV2O6 ceramics exhibit the γ-phase when sintered at 660°C, achieving the highest densification and optimal microwave dielectric properties (εr = 11.6, Q×f = 39,177 GHz, τf = -15 ppm/°C). However, at 690°C, a phase transition occurs from the γ-phase to the α- phase, leading to a deterioration in dielectric properties. Co2V2O7 ceramics achieve maximum grain densification and excellent dielectric properties at 720°C (εr = 9.4, Q×f = 88,645 GHz, τf = -37 ppm/°C). Notably, the sintering temperature of Co2V2O7 ceramics can be lowered to 660°C while still preserving excellent microwave dielectric properties (εr = 7.7, Q×f = 75,887 GHz, τf = -58 ppm/°C).
The relationship between microwave dielectric properties and chemical bonding characteristics was analyzed using P-V-L bond theory and Raman spectroscopy. The results reveal that the V–O bond, present in the lattices of both types of ceramics, is representative of the primary lattice vibrations and plays a critical role in influencing polarizability. Moreover, for both CoV2O6 and Co2V2O7 ceramics, the changes in chemical bond characteristics at different sintering temperatures are relatively minor and negligible compared to the effects of external factors. However, when the lattice structure and the proportions of chemical bonds change, the impact of chemical bond characteristics on microwave dielectric properties becomes significant. The low dielectric loss of Co2V2O7 ceramics is attributed to the higher lattice energy provided by the Co–O bond. In contrast, CoV2O6 ceramics exhibit a lower sintering temperature due to the higher V2O5 content.
Both ceramics exhibit excellent chemical compatibility with aluminum, making them promising candidates for applications in low-temperature co-fired ceramics (LTCCs) and ultra-low-temperature co-fired ceramics (ULTCCs). These materials are suitable for devices operating in microwave frequencies and beyond, contributing significantly to sustainable development and advanced communication technologies.
[1] Das, R. R., Rajalekshmi, T. R., & James, A. FinFET to GAA MBCFET: A Review and Insights. IEEE Access, 2024.
[2] Gargini, P. A. Overcoming Semiconductor and Electronics Crises With IRDS: Planning for the Future. IEEE Electron Devices Magazine, 1(3), 32-47, 2023.
[3] Chou, B. J., Chung, Y. Y., Yun, W. S., Hsu, C. F., Li, M. Y., Su, S. K., ... & Chien, C. H. High-performance monolayer MoS2 nanosheet GAA transistor. Nanotechnology, 35(12), 125204, 2024.
[4] Collaert, N., Alian, A., Banerjee, A., Chauhan, V., ElKashlan, R. Y., Hsu, B., ... & Waldron, N. (Plenary) the revival of compound semiconductors and how they will change the world in a 5G/6G era. ECS Transactions, 98(5), 15, 2020.
[5] Dahiya, M. Need and advantages of 5G wireless communication systems. International Journal, 5(6), 2017.
[6] Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, 64, 245-274, 2023.
[7] Bassoli, R., Fitzek, F. H., & Strinati, E. C. Why do we need 6G?. ITU Journal on Future and Evolving Technologies, 2(6), 1-31, 2021.
[8] Sebastian, M. T. Dielectric materials for wireless communication. Elsevier, 2010.
[9] Venkatesh, M. S., & Raghavan, G. S. V. An overview of dielectric properties measuring techniques. Canadian biosystems engineering, 47(7), 15-30, 2005.
[10] Sebastian, M. T., Ubic, R., & Jantunen, H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 60(7), 392-412, 2015.
[11] Sebastian, M. T., Ubic, R., & Jantunen, H. (Eds.). Microwave Materials and Applications, 2 volume set. John Wiley & Sons, 2017.
[12] Huang, Y. T., Huang, C. C., Hsu, T. H., & Huang, C. L. Ultra-low temperature sintering and microwave dielectric properties of Mg-substituted SrCoV2O7 ceramics. Journal of Asian Ceramic Societies, 10(1), 188-195, 2022.
[13] Lin, T. H., Huang, C. C., & Huang, C. L. Correlation between chemical bond characteristics and microwave dielectric properties of KLa (MoO4)2 ceramics. Ceramics International, 51(2), 1751-1763, 2025.
[14] Huang, Y. T., Huang, C. C., Wu, C. C., Hsu, T. H., & Huang, C. L. Characterization and application of silver molybdenum vanadate as a substrate of dual-band filter for 5G system. Applied Physics A, 129(8), 562, 2023.
[15] Lin, T. H., Huang, C. C., Hsu, T. H., & Huang, C. L. High-dielectric-constant microwave dielectric in the (16–x–y)CaO–xSrO–yBaO–Li2O–Sm2O3–Nd2O3–TiO2 ceramic system. Journal of Materials Science: Materials in Electronics, 35(22), 1546, 2024.
[16] Shan, Y., Lu, Y., Guo, X., & Zhou, H. Microwave dielectric properties of V2O5/CeO2 doped (Mg0. 95Ca0. 05) TiO3‐MgO and their application to a dielectric filter. International Journal of Applied Ceramic Technology, 21(5), 3601-3611, 2024.
[17] Podonak, M. K., Paydar, M. H., Forghani, M., & Guo, J. B2O3 as an effective additive for cold sintering of MgTiO3. Journal of the European Ceramic Society, 44(1), 261-269, 2024.
[18] H. Bahiraei and C. K. Ong, “Influence of MoO3 additive on grain growth and magnetic properties of Mg0.3Cu0.2Zn0.5Fe2O4 ceramics sintered at low temperature,” J. Mater. Sci.: Mater. Electron, 32,22, 26967-26974, 2021.
[19] Ma, J., Zhang, Y., Chen, C., & She, Y. The phase evolution, microstructure and microwave dielectric properties of non-stoichiometric Li2 (1+x)Mg3TiO6 ceramics. Journal of Materials Science: Materials in Electronics, 35(1), 80, 2024.
[20] Shen, C. H., Huang, C. L., Chen, W. T., & Pan, C. L. Microwave Dielectric Properties of (1−x)(Mg0. 95Ni0.05)TiO3–x (Ca0.8Sr0.2)TiO3 Ceramic System With Near‐Zero Temperature Coefficient. International Journal of Applied Ceramic Technology, 9(2), 447- 453, 2012.
[21] Wang, Z., & Chen, Y. Structures and microwave dielectric properties of Ti-doped CeO2 ceramics with a near-zero temperature coefficient of resonant frequency. Journal of Alloys and Compounds, 854, 157270, 2021.
[22] Dou, G., Zhou, D., Guo, M., & Gong, S. Low-temperature sintered Zn2SiO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. Journal of alloys and compounds, 513, 466-473, 2012.
[23] Liu, Y., Cheng, Z., Gan, L., Chu, X., Wang, J., Jiang, J., & Zhang, T. Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics. Ceramics International, 50(1), 2103-2110, 2024.
[24] Qing, Z., Zhou, X., Zou, H., Li, H., & Li, Y. Structure, bond chemistry and enhanced microwave dielectric properties of La2−xYxMo2O9 ceramics with low sintering temperature. Journal of the European Ceramic Society, 44(2), 930-935, 2024.
[25] Huang, F., Su, H., Zhang, Q., Wu, X., Li, Y., & Tang, X. Na-doped diopside microwave ceramics with dielectric properties influenced by the sintering, lattice vibration and chemical bond characteristics. Journal of Alloys and Compounds, 896, 162973, 2022.
[26] Lin, M. C., Ling, I. C., Hsu, T. H., & Huang, C. L. Investigation of the Correlation between Structure and Microwave Dielectric Properties of ZnV2O6 Ceramic Using PVL Bond Theory. Journal of the European Ceramic Society, 2024.
[27] Penn, S. J., Alford, N. M., Templeton, A., Wang, X., Xu, M., Reece, M., & Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. Journal of the American Ceramic Society, 80(7), 1885-1888, 1997.
[28] Huang, C. L., Chiang, P. E., & Hsu, T. H. Influence of intrinsic and extrinsic factors on microwave dielectric properties of (Sr1-xMgx)V2O6 (x= 0.01–0.09) ceramics for ULTCC applications. Materials Science and Engineering: B, 273, 115438, 2021.
[29] H. Cao, L. Chen, B. Li, A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature, Mater. Lett. 326 132924, 2022.
[30] Neelakantan, U. A., Kalathil, S. E., & Ratheesh, R. Structure and microwave dielectric properties of ultralow‐temperature cofirable BaV2O6 ceramics. European Journal of Inorganic Chemistry, 305-310, 2015(2).
[31] Joung, M. R., Kim, J. S., Song, M. E., Nahm, S., & Paik, J. H. Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics. Journal of the American Ceramic Society, 92(12), 3092-3094, 2009.
[32] Huang, C. L., Huang, J. L., & Tsai, M. H. Ultra-low temperature sintering and temperature stable microwave dielectrics of (Mg1-xZnx)V2O6(x= 0–0.09) Ceramics. Journal of Asian Ceramic Societies, 9(1), 106-112, 2021.
[33] Joung, M. R., Kim, J. S., Song, M. E., Nahm, S., Paik, J. H., & Choi, B. H. Formation and microwave dielectric properties of the Mg2V2O7 ceramics. Journal of the American Ceramic Society, 92(7), 1621-1624, 2009.
[34] Yao, G. G., Pei, C. J., Xu, J. G., Liu, P., Zhou, J. P., & Zhang, H. W. Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss. Journal of Materials Science: Materials in Electronics, 26, 7719-7722, 2015.
[35] Li, Y. S., Hsu, T. H., & Huang, C. L. Effect of Mn:Mg ratio on sintering behavior and microwave dielectric properties of (Mn, Mg)V2O6 ceramics at ultra-low sintering temperature. Journal of the European Ceramic Society, 43(9), 4060-4065, 2023.
[36] McArdle, S., Bauer, F., Granieri, S. F., Ast, M., Di Fonzo, F., Marshall, A. T., & Radinger, H. Defective Carbon for Next‐Generation Stationary Energy Storage Systems: Sodium‐Ion and Vanadium Flow Batteries. ChemElectroChem, 11(4), e202300512, 2024.
[37] Wang, N., Li, W., Cao, G., Duan, R., Pei, J., Luo, P., ... & Li, X. Constructing Co/CoV2O6 tandem catalytic heterostructure to enhance lithium polysulfide conversion in lithium-sulfur batteries. Journal of Alloys and Compounds, 980, 173394, 2024.
[38] Reshma, P. R., Prasad, A. K., & Dhara, S. Novel bilayer 2D V2O5 as a potential catalyst for fast photodegradation of organic dyes. Scientific Reports, 14(1), 14462, 2024.
[39] Kalathil, S. E., Neelakantan, U. A., & Ratheesh, R. Microwave Dielectric Properties of Ultra-low‐Temperature Cofirable Ba3V4O13 Ceramics. Journal of the American Ceramic Society, 97(5), 1530-1533, 2014.
[40] Umemura, R., Ogawa, H., Yokoi, A., Ohsato, H., & Kan, A. Low-temperature sintering- microwave dielectric property relations in Ba3(VO4)2 ceramic. Journal of alloys and compounds, 424(1-2), 388-393, 2006.
[41]Umemura, R., Ogawa, H., Ohsato, H., Kan, A., & Yokoi, A. Microwave dielectric properties of low-temperature sintered Mg3 (VO4) 2 ceramic. Journal of the European Ceramic Society, 25(12), 2865-2870, 2005.
[42] A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications, John Wiley & Sons, 2003.
[43] J.P. Schaffer, The science and design of engineering materials, (No Title) (1999).
[44] Gurevich, V.L. and Tagantsev, A.K. Intrinsic dielectric loss in crystals. Advances in Physics, 40 (6), 719–767, 1991.
[45] Gurevich, V. L., & Tagantsev, A. K. Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP, 64, 142-151, 1986.
[46] Braginsky, V. B., Ilchenko, V. S., & Bagdassarov, K. S. Experimental observation of fundamental microwave absorption in high-quality dielectric crystals. Physics Letters A, 120(6), 300-305, 1987.
[47] Kajfez, D. and Guillon, P. Dielectric Resonators, Noble Publishing Corporation, 547pp, 1998.
[48] Tsung-Hsien Hsu, Microwave Dielectric Properties of Low-Loss and ULTCC Materials for Advanced High- Frequency Communication Components in 5G/6G Systems, National Cheng Kung University, 2024.
[49] Kobayashi, Y., & Tanaka, S. Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates. IEEE Transactions on Microwave Theory and Techniques, 28(10), 1077-1085, 1980.
[50] Cohn, S. B., & Kelly, K. C. Microwave measurement of high-dielectric-constant materials. IEEE Transactions on microwave theory and techniques, 14(9), 406-410, 1966. [51] C.-L. Huang, W.-R. Yang, P.-C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1− xNix)3Nb2O8 ceramics, Journal of the European Ceramic Society 34(2) 277-284, 2014.
[52] S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, Journal of the American Ceramic Society 80(7) 1885-1888, 1997.
[53] Shannon, R. D., & Rossman, G. R. Dielectric constants of silicate garnets and the oxide additivity rule. American Mineralogist, 77(1-2), 94-100, 1992.
[54] L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids, Journal of the American Chemical Society 122(4) 632-638, 2000.
[55] E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics, Journal of the European Ceramic Society 30(7) 1731-1736, 2010.
[56] N. Brese, M. O'keeffe, Bond-valence parameters for solids, Acta Crystallographica Section B: Structural Science 47(2) 192-197, 1991.
[57] R. Nelsen, . Springer, New York, An Introduction to Copulas (1999).
[58] R.M. German, P. Suri, S.J. Park, Liquid phase sintering, Journal of materials science 44 (2009) 1-39.
[59] Kellett, B. J., & Lange, F. F. Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage. Journal of the American Ceramic Society, 72(5), 725-734, 1989.
[60] Lange, F. F., & Kellett*, B. J. Thermodynamics of densification: II, grain growth in porous compacts and relation to densification.Journal of the American Ceramic Society, 72(5), 735-741, 1989.
[61] R.M. German, Sintering theory and practice, 1996.
[62] D. Kajfez, Basic principles give understanding of dielectric waveguides and resonators, Microwave Syst. News 13 (1983) 152-161.
[63] D. Kajfez, A.W. Glisson, J. James, Computed modal field distributions for isolated dielectric resonators, IEEE transactions on Microwave Theory and Techniques 32(12) (1984) 1609-1616.
[64] Phillips, J. C. Ionicity of the chemical bond in crystals.Reviews of modern physics, 42(3), 317, .
[65] Phillips, J. C. & Van Vechten, J. A. Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors. Phys. Rev. B 2, 2160- 2167 , 1970.
[66] Van Vechten, J. A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Physical Review, 182(3), 891, 1969.
[67] Levine, B. F. Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59(3), 1463–1486, 1973.
[68] Chen, L. F., Ong, C. K., Neo, C. P., Varadan, V. V., & Varadan, V. K. Microwave electronics: measurement and materials characterization. John Wiley & Sons, 2004.
[69] Hakki, B. W., & Coleman, P. D. A dielectric resonator method of measuring inductive capacities in the millimeter range.IRE Transactions on Microwave theory and techniques, 8(4), 402-410, 1960.
[70] Courtney, W. E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 18(8), 476-485, 1970.
[71] Kobayashi, Y., & Katoh, M. Microwave measurement of dielectric properties of low- loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 33(7), 586-592, 1985.
[72] Cohn, S. B., & Kelly, K. C. Microwave measurement of high-dielectric-constant materials. IEEE Transactions on microwave theory and techniques, 14(9), 406-410, 1966. [73] Ginzton, E. L., & Beers, Y. Microwave measurements. Journal of The Electrochemical Society, 105(3), 67C, 1958.
[74] Vanzura, E. J., & Rogers, J. E. Resonant circuit model evaluation using reflected S- parameter data. In [1991] Conference Record. IEEE Instrumentation and Measurement Technology Conference(pp. 150-155). IEEE, (1991,May).
[75] Müller-Buschbaum, H., & Kobel, M. Zur Kristallchemie von Oxovanadaten: γ-CoV2O6 and MnV2O6. Journal of alloys and compounds, 176(1), 39-46, 1991.
[76] Pei, C. J., Yao, G. G., & Ren, Z. Y. Microwave dielectric properties of BaV2O6 ceramics with ultra-low sintering temperature. Journal of Ceramic Processing Research, 17(7), 681- 684, 2016.
[77] Diaz-Anichtchenko, D., Bandiello, E., Gonzáles-Platas, J., Liang, A., He, Z., Muñoz, A., ... & Popescu, C. Physical Properties and Structural Stability of Cobalt Pyrovanadate Co2V2O7 under High-Pressure Conditions. The Journal of Physical Chemistry C, 126(31), 13416-13426, 2022.
[78] Lenertz, M., Alaria, J., Stoeffler, D., Colis, S., & Dinia, A. Magnetic properties of low- dimensional α and γ CoV2O6. The Journal of Physical Chemistry C, 115(34), 17190-17196, 2011.
[79] Huang, C. C., Wu, C. C., & Huang, C. L. Relationship between chemical bond characteristics and microwave dielectric properties of low temperature sintering CoO-V2O5 ceramics. Journal of the European Ceramic Society, 45(1), 116865, 2025.
校內:2030-04-01公開