| 研究生: |
陳畊仲 Chen, Ken-Chung |
|---|---|
| 論文名稱: |
年齡及表面處理對顎骨骨母細胞於鈦植入物之生物反應影響 Effect of age and surface treatment on biological response of human jawbone osteoblast on titanium surface |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 共同指導: |
張志涵
Chang, Chih-Han |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 年齡 、表面粗糙處理 、顎骨骨母細胞 、骨整合 |
| 外文關鍵詞: | age, surface roughness treatment, jawbone osteoblast, osseointegration |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工植牙已是目前缺牙區贋復重要治療方式之一,而能成功進行後續缺牙贋復,必須植入顎骨之植體,與宿主顎骨產生良好骨整合。骨整合即為宿主細胞與生物相容性材料之間產生緊密之結合。因此,材料本身生物相容性,細胞與材料之交互作用以及宿主相關因素,例如年齡或性別,都是目前探討提高骨整合成功率研究方向。
宿主因素以臨床研究為主,在年齡方面,大量研究證實,基本骨代謝機制會隨著年齡增加而退化。理論上於老年病患植牙成功率應該會減低,但目前臨床研究證據為年老並不會降低植牙成功率。但卻缺乏基礎骨整合機制研究,僅有少數以長骨進行之相關實驗,加入年齡因素之研究更少。文獻搜尋結果,僅有一篇研究以不同年齡病患取出之長骨細胞種植於鈦合金之研究,結果顯示年齡會影響早期鈣化及部分分化機制,但對細胞增生卻無影響。
目前尚未解決問題,第一,臨床與基礎研究結果不相同。第二,植牙是植入顎骨,但以顎骨為主之研究卻相當少,結合年齡因素研究更付之闕如。第三,結合顎骨來源細胞與不同表面處理之研究。
故本研究目的,以顎骨初級培養出之骨母細胞,於不同表面處理之純鈦試片上進行研究。探討不同年齡來源之顎骨骨母細胞在不同表面處理試片上,骨整合過程是否有不一樣的表現。
材料與方法如下:自不同年齡層之病患口腔取出之上顎或下顎骨,嘗試於體外培養出骨母細胞。經鹼性磷酸脢染色確認為骨母細胞後,將細胞種植於不同表面處理之鈦試片。本實驗以目前市佔率最高的噴砂酸蝕,以及實驗室長期開發之微弧陽極氧化為主。試片於表面處理後先行測試其表面粗糙度,以電子顯微鏡觀察表面形態。第3,24小時以免疫螢光染色觀察陪養皿中細胞形態,以電子顯微鏡觀察細胞種植於試片後之細胞形態及貼附性。於第1、3、7、14天以alarmar blue assay測量細胞增生,第3、7、14天以鹼性磷酸脢活性監測細胞分化。於第14天以骨鈣素及骨保護素另行監測細胞分化。
實驗結果顯示,本次實驗所使用之方法,經鹼性磷酸脢染色確認,可成功培養出顎骨骨母細胞。而細胞無論於培養皿,或種植於試片後,於試片上生長之細胞型態並無太大差異。但於第24小時,於微弧陽極氧化表面細胞有較佳之延展度。於細胞增生方面,微弧氧化表現最好,而不同年齡層則無明顯差異。細胞分化方面,於鹼性磷酸脢控制組(培養皿)及骨保護素製造,年輕組表現較佳,呈現統計上差異。其餘分組,不同年齡層並無顯著統計差異。
本實驗結論為年齡增加對於顎骨造骨母細胞於鈦試片上之形態,增生無顯著影響,但對部分分化因子有負面影響。表面粗糙處理確實對增生及分化有益,而微弧陽極氧化表現優於噴砂酸蝕。與部分臨床研究結果相符,但仍須更多之樣本,以得到更正確,更有證據之實驗結果。
最後,本實驗建議,既然自人體顎骨培養骨母細胞已是成熟方法。研究人工植牙細胞與分子機制,應優先考慮以人類顎骨骨母細胞進行實驗。另外,不論是動物實驗,或細胞實驗,應將年齡標註做為讀者參考。
Background: Dental implants are a popular treatment for edentulous patients. The host response and the properties of the implant surface are considered the key factors for the success of osseointegration. Aging is one of the factors affecting the host response and has been considered a risk factor for osseointegration. However, little is known about the effects of aging on the molecular responses of bone cells, especially jawbone osteoblasts, to implant materials with different surface treatments. Our aim was to investigate the influence of different implant surface topographies and different ages on the expression of differentiation/proliferation markers in human jawbone osteoblasts.
Material and methods: Titanium disks with different surface treatments, including sandblasting, acid etching (SLA) and microarc oxidation (MAO), were produced. Surface roughness was evaluated by profilometry, and topography was observed by SEM. Tissue was harvested from a human jawbone and cultured to obtain osteoblasts in vitro, which were then seeded onto titanium disks. The growth of osteoblasts isolated from subjects of different ages on all surfaces was compared. Alkaline phosphatase (ALP) activity was tested to determine cell differentiation on day 3, day 7, and day 14, and alamarBlue assays were used to determine cell proliferation on day 1, day 3, day 7, and day 14. Osteocalcin (OC) and osteoprotegerin (OPG) were measured on day 14. A linear mixed model was used in the data analysis.
Results: Fifteen samples were collected, and osteoblasts from the human jawbone were successfully cultured. For the surface effect, the MAO surface better supported cell proliferation and differentiation. Regarding the effect of age, no difference in cell proliferation was noted among the different ages, but a significant difference was found in the expression of differentiation markers (ALP and OPG).
Conclusions: Appropriate surface treatment is important to the mechanism of osseointegration, and age plays some role in osseointegration.
1. Branemark PI et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl; 16:1–132, 1977
2. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J;10(Suppl 2): S96–S101, 2001
3. K. Anselme Osteoblast adhesion on biomaterials Biomaterials;21: 667-681, 2000
4. P.M. Brett et al. Roughness response genes in osteoblasts Bone;35: 124– 133, 2004
5. Daniel Buser, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res; 45:75– 83, 1999
6. Cordioli G et al. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants; 15:668–74, 2000
7. Le Guehennec et al. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials.;23(7):844-54, 2007
8. B.H. Zhao et al. Effects of surface morphology on human osteosarcoma cell response Current Applied Physics;7S1: e6–e10, 2007
9. Xiaohui Rausch-fana et al. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces dental materials; 24:102–110, 2008
10. Juanli Guo et al. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo Biomaterials; 28:5418–5425, 2007
11. Stanford CM. Dental implants. A role in geriatric dentistry for the general practice? Journal of the American Dental Association.;138 Suppl:34S-40S, 2007
12. de Baat C. Success of dental implants in elderly people--a literature review. Journal Article. Review Gerodontology; 17(1):45-8, 2000
13. Hai Zhang et al. The effects of patient age on human osteoblasts’ response to Ti-6A1-4V implants in vitro Journal of Orthopaedic Research;22: 30-38, 2004
14. Carlo Galli et al. Comparison of Human Mandibular Osteoblasts Grown on Two Commercially Available Titanium Implant Surfaces J Periodontol;76(3):364-372, 2005
15.C.G. Bellows Proliferation, differentiation and self-renewal of osteoprogenitors in vertebral cell populations from aged and young female rats Mechanisms of Ageing and Development;18:747-757, 2003
16.Arun K. Garg Bone biology, harvesting, grafting for dental implants Quintessence Publishing, USA, 1st edition 2004
17. D.A. Puleo, A. Nanc Understanding and controlling the bone–implant interface Biomaterials;20: 2311~2321, 1999
18. Franchi Marcoa, Fini Milenab, Giavaresi Gianlucab, Ottani Vittoria Peri-implant osteogenesis in health and osteoporosis. Micron; (36) 630–644, 2005
19. Francois P. Vaudaux P. Taborelli M. Tonetti M. Lew DP. Descouts P. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (II) Adsorption isotherms and biological activity of immobilized fibronectin Clinical Oral Implants Research; 8(3):217-25, 1997
20. Dietmar Weng Marianne Hoffmeyer Markus B. Hürzeler Ernst-Jürgen Richter Osseotite® vs. machined surface in poor bone quality Clinical Oral Implants Research;14(6):703-8, 2003
21. C.H. Lohmann et al. Maturation State Determines the Response of Osteogenic Cells to Surface Roughness and 1,25-Dihydroxyvitamin D3 Journal of Bone and Mineral Research;15:1169-1180, 2000
22. Martin et al., Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells (MG63) The Journal of biomedical material research; 29: 389–401, 1995
23. Cindy de Pollak et al. Age-Related Changes in Bone Formation, Osteoblastic Cell Proliferation, and Differentiation During Postnatal Osteogenesis in Human Calvaria Journal of Cellular Biochemistry; 64:128–139, 1997
24. C. M. Gundberg et al. Patterns of Osteocalcin and Bone Specific Alkaline Phosphatase by Age, Gender, and Race or Ethnicity Bone; 31(6):703–708, 2002
25. CY Lu.et al. Cellular basis for age-related changes in fracture repair Journal of Orthopaedic Research; 23:1300–1307, 2005
26. Silvia Cei Age-related changes of cell outgrowth from rat calvarial and mandibular bone in vitro Journal of Cranio-Maxillofacial Surgery; 34: 387–394, 2006
27. Kurze et al P. Kurze, W. Drysmann and W. Knofler, Anodic oxidation using spark discharge a new surface treatment method for medical technology, Stomatology der DDR; 36:549–554, 1986
28.Yamagami et al. Mechanical and histologic examination of titanium alloy material treated by sandblasting and anodic oxidation, The International Journal of Oral and Maxillofacial Implants; 20: 48–53, 2005
29. Albrektsson T, Johansson C, Lundgren AK, Sul YT, Gottow J. Experimental studies on oxidized implants. A histomorphometrically and biomechanical analysis.Appl Os seointegration Res; 1: 21-24, 2000
30. Henry P, Tan A, Allan B, Hall J, Johansson C. Removal torque comparison of TiUnite and turned implants in the greyhound dog mandible. Appl Osseointegration Res; 1: 15-17, 2000
31. Glauser R, Lundgren AK, Gottlow J, Sennerby L, Portmann M, Ruhstaller P,Hämmerle CHF. Immediate occlusal loading of Brånemark MKIV TiUnite implants placed predominantly in soft bone: 1-year results of a prospective, clinical study. Clin Implant Dent Relat Res; 5 Suppl 1:47-56, 2003
32. Rocci A, Martignoni M, Gottlow J. Immediate loading of Brånemark System TiUnite and machined surface implants in the posterior mandible. A randomized, open-ended clinical trial. Clin Impl Dent Rel Res; 5 Suppl 1:57-63, 2003
33. Kamal Mustafa et al. Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone Clin Oral Impl Res; 11: 116–128, 2000
34. Kamal Mustafa et al. Determining optimal surface cyclooxygenase of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone Clin. Oral Impl. Res.; 12:515–525, 2001
35. Carlo Galli et al. Different titanium surface treatment influences human mandibular osteoblast response J Periodontol; 75(2):273-282, 2004
36. Alison Gartland et al. Isolation and Culture of Human Osteoblasts Methods in Molecular Medicine; 806:337-55, 2012
37.Jason M Maihot An isolation and in vitro culturing method for human intraoral bone cells derived from dental implant preparation sites Clin. Oral Impl. Res.; 9;43-50, 1998
38. Yang, S.-P.; Wen, H.-S.; Lee, T.-M.; Lui, T.-S. Cell response on the biomimetic scaffold of silicon nano- and micro-topography. J. Mater. Chem. B; 4:1891–1897, 2016
39. T. Peitsch, A. Klocke, B. Kahl‐Nieke, O. Prymak, M. Epple The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation J of Biomedical Research; 82A (3): 731-739, 2007
40. Jacek Matys, Katarzyna Świder, Rafał Flieger, Marzena Dominiak Assessment of the primary stability of root analog zirconia implants designed using cone beam computed tomography software by means of the Periotest® device: An ex vivo study. A preliminary report Adv Clin Exp Med.; 26(5):803-809, 2017
41. Ralf Smeets, Clarissa Precht, Michael Hahn, Ole Jung, Philip Hartjen, Max Heiland, Alexander Gröbe, Marzellus Große Holthaus, Henning Hanken Biocompatibility and Osseointegration of Titanium Implants with a Silver-Doped Polysiloxane Coating: An In Vivo Pig Model Int J Oral Maxillofac Implants.; 32(6):1338–1345, 2017
42. Pär Johansson, Sargon Barkarmo, Mohammed Hawthan, Niccolò Peruzzi, Per Kjellin, Ann Wennerberg Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit J Biomed Mater Res A.; 106(5):1440-1447, 2018
43. Antonio Scarano, Adriano Piattelli, Alesandro Quaranta, Felice Lorusso Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits Biomed Res Int.; 2017:8724951, 2017
44. Hesham F Marei, Khalid Mahmood, Khalid Almas Critical Size Defects for Bone Regeneration Experiments in the Dog Mandible: A Systematic Review Implant Dent.; 27(1):135-141, 2018
45. Paulo G Coelho, Benjamin Pippenger, Nick Tovar, Sietse-Jan Koopmans, Natalie M Plana, Dana T Graves, Steve Engebretson, Heleen M M van Beusekom, Paula G F P Oliveira, Michel Dard Effect of Obesity or Metabolic Syndrome and Diabetes on Osseointegration of Dental Implants in a Miniature Swine Model: A Pilot Study J Oral Maxillofac Surg.; 76(8):1677-1687, 2018
46. Vincent Offermanns, Ole Z. Andersen, Gregor Riede, Michael Sillassen, Christian S. Jeppesen, Klaus P. Almtoft, Heribert Talasz, Caroline Öhman- Magi, Bernd Lethaus, Rene Tolba, Frank Kloss, Morten Foss Effect of strontium surface-functionalized implants on early and late osseoin- tegration: a histological, spectrometric and tomographic evaluation Acta Biomater.; Mar 15;69:385-394, 2018
47. Jacek Matys, Rafał Flieger, Gianluca Tenore, Kinga Grzech-Leśniak, Umberto Romeo, Marzena Dominiak Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis-an animal study Lasers Med Sci.; 33(3):489-495, 2018
48. Tzu-Hsiang Lin, Hsin-Tai Hu, Hsueh-Chun Wang, Meng-Chian Wu, Shu-Wei Wu, Ming-Long Yeh Evaluation of osseous integration of titanium orthopedic screws with novel SLA treatment in porcine model PLoS One.; Nov 17;12(11):e0188364, 2017
49. Anand Kumar Muktadar, Makam Gangaiah, Bruno Ramos Chrcanovic, Ramesh Chowdhary Evaluation of the effect of self-cutting and nonself-cutting thread designed implant with different thread depth on variable insertion torques: An histomorphometric analysis in rabbits Clin Implant Dent Relat Res.; 20(4):507-514, 2018
50. Luigi Canullo, Marco Tallarico, Daniele Botticelli, Karol Alí Apaza Alccayhuaman, Evandro Carneiro Martins Neto, Samuel Porfirio Xavier Hard and soft tissue changes around implants activated using plasma of argon: A histomorphometric study in dog Clin Oral Implants Res.; 29(4):389-395, 2018
51. Ping-Jen Hou, Hsin-Hua Chou, Chin-Chieh Wang, Chiung-Fang Huang, Erwan Sugiatno, Tzu-Sen Yang, Keng-Liang Ou Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant J Mech Behav Biomed Mater.; 79:173-180, 2018
52. A Verket, S P Lyngstadaas, H Tiainen, H J Rønold, J C Wohlfahrt Impact of particulate deproteinized bovine bone mineral and porous titanium granules on early stability and osseointegration of dental implants in narrow marginal circumferential bone defects Int J Oral Maxillofac Surg.; 47(8):1086-1094, 2018
53.Renata Falchete do Prado et al. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy PLoS One.; May 17;13(5):e0196169, 2018
54. Jae-Kook Cha, Ui-Won Jung, Daniel S Thoma, Christoph H F Hämmerle, Ronald E Jung Osteogenic efficacy of BMP-2 mixed with hydrogel and bone substitute in peri-implant dehiscence defects in dogs: 16 weeks of healing Clin Oral Implants Res.; 29(3):300-308, 2018
55. Sergio Alexandre Gehrke, Raphaél Bettach, Jaime Sardá Aramburú Júnior, Juan Carlos Prados-Frutos , Massimo Del Fabbro , Jamil Awad Shibli Peri-Implant Bone Behavior after Single Drill versus Multiple Sequence for Osteotomy Drill BioMed Research International Special issue;Volume 2018:1-8, 2018
56. V Moraschini, D C F Almeida, J A Calasans-Maia, M Diuana Calasans-Maia The ability of topical and systemic statins to increase osteogenesis around dental implants: a systematic review of histomorphometric outcomes in animal studies Int J Oral Maxillofac Surg.; 47(8):1070-1078, 2018
57. Clovis Mariano Faggion Jr, Karla Tatiana Diaz, Luisiana Aranda, Frank Gabel, Stefan Listl, Marco Antonio Alarcón The risk of bias of animal experiments in implant dentistry: a methodological studyClin Oral Implants Res.; Jul;28(7):e39-e45, 2017
58. Kieswetter K, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblastlike MG63 cells. J Biomed Mater Res; 32:55–63, 1996
59. Lincks J et al. Response of MG63 osteoblast- like cells to titanium and titanium alloy is dependent onsurface roughness and composition. Biomaterials; 19:2219–2232, 1998
60. Boyan BD et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1α,25-(OH)2D3. J Biomed Mater Res; 39:77–85,1998
61. Sisk M et al. Inhibition of cyclooxygenase by indomethacin modulates osteoblast response to titanium surface roughness in a time-dependent manner. Clin Oral Implants Res; Feb;12(1):52-61, 2001
62. Mundy GR. et al. The effects of TGF-beta on bone. Ciba Found Symp; 157:137–51, 1991
63. Schwartz Z et al. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1α,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials; 22:731–41, 2001
64. Raz P et al. 1α,25-(OH)2D3 regulation of integrin expression is substrate dependent.J Biomed Mater Res A; 71:217 e25, 2004
65. Zvi Schwartz et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces Biomaterials; 30: 3390–3396, 2009
66. B.D. Boyan et al. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy Biomaterials; 31:4909e4917, 2010
67. M E Martínez, S Medina, M Sánchez, M T Del Campo, P Esbrit, A Rodrigo, P Martínez, M J Sánchez-Cabezudo, I Moreno, M V Garcés, L Munuera Influence of skeletal site of origin and donor age on 1,25(OH)2D3-induced response of various osteoblastic markers in human osteoblastic cells Bone.; 24(3):203-9, 1999
68. S Katzburg, M Lieberherr, A Ornoy, B Y Klein, D Hendel, D Somjen Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differences Bone.; 25(6):667-73, 1999
69. Hai Zhang, Michael S Aronow, Gloria A Gronowicz Transforming growth factor-beta 1 (TGF-beta1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures J Biomed Mater Res A.; 75(1):98-105, 2005
70. S Mohan, J R Farley, D J Baylink Age-related changes in IGFBP-4 and IGFBP-5 levels in human serum and bone: implications for bone loss with aging Prog Growth Factor Res.; 6(2-4):465-73, 1995
71. Grasiele E Crippa, Marcio M Beloti, Cristina R Cardoso, João S Silva, Adalberto L Rosa Effect of growth hormone on in vitro osteogenesis and gene expression of human osteoblastic cells is donor-age-dependent J Cell Biochem.; 15;104(2):369-76, 2008
72. S-Y Jiang, R Shu, Y-F Xie, S-Y Zhang Age-related changes in biological characteristics of human alveolar osteoblasts Cell Prolif.; 43(5):464-70, 2010
73. S-Y Jiang, R Shu, Z-C Song, Y-F Xie Effects of enamel matrix proteins on proliferation, differentiation and attachment of human alveolar osteoblasts Cell Prolif.; 44(4):372-9, 2011
74. Dao-Cai Sun, De-Hua Li, Hui-Cang Ji, Guo-Zhou Rao, Li-Hua Liang, Ai-Jie Ma, Chao Xie, Gui-Ke Zou, Ying-Liang Song In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics Braz J Med Biol Res.; 45(6):502-9, 2012
75. Eduardo Anitua, Ricardo Tejero, Mari Mar Zalduendo, Gorka Orive Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts J Periodontol.; 84(8):1180-90, 2013
76. Martin Wein, Diana Huelter-Hassler, Katja Nelson, Tobias Fretwurst, Susanne Nahles, Guenter Finkenzeller, Brigitte Altmann, Thorsten Steinberg Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis J Bone Miner Metab.; 37(1):105-117, 2019
77. Andrea Pilloni, Giorgio Pompa, Matteo Saccucci, Gabriele Di Carlo, Lia Rimondini, Marina Brama, Blerina Zeza, Francesca Wannenes, Silvia Migliaccio Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study BMC Oral Health.; 14:22, 2014
78. H Tanaka, H Ogasa, J Barnes, C T Liang Actions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of age Mol Cell Endocrinol.; 150(1-2):1-10, 1999
79. M Kveiborg, A Flyvbjerg, S I Rattan, M Kassem Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions Exp Gerontol. ; 35(8):1061-74, 2000
80. Theresa L Chen Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment Bone.; 35(1):83-9, 2004
81. Rene Olivares-Navarrete, Andrew L Raines, Sharon L Hyzy, Jung Hwa Park, Daphne L Hutton, David L Cochran, Barbara D Boyan, Zvi Schwartz Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age J Bone Miner Res.; 27(8):1773-83, 2012
82. G Zhao, Z Schwartz, M Wieland, F Rupp, J Geis-Gerstorfer, D L Cochran, B D Boyan High surface energy enhances cell response to titanium substrate microstructure J Biomed Mater Res A.; 74(1):49-58, 2005
82. Adnan Abdullah Al-Fahd Old age alone may not be a risk factor for dental implant failure J Evid Based Dent Pract. ; 16(3):176-178, 2016
83. D I Sendyk, E S Rovai 2, C M Pannuti 2, M C Z Deboni 1, W R Sendyk 3, A Wennerberg Dental implant loss in older versus younger patients: a systematic review and meta-analysis of prospective studies J Oral Rehabil.; 44(3):229-236, 2017
84. Murali Srinivasan, Simon Meyer, Andrea Mombelli, Frauke Müller Dental implants in the elderly population: a systematic review and meta-analysis Clin Oral Implants Res. ; 28(8):920-930, 2017
85. Ana Paula de Souza Faloni, Ton Schoenmaker, Azin Azari, Eduardo Katchburian, Paulo S Cerri, Teun J de Vries, Vincent Everts Jaw and long bone marrows have a different osteoclastogenic potential Calcified Tissue Int.; 88(1):63-74, 2011
86. Cindy Kelder, Cornelis J Kleverlaan, Marjolijn Gilijamse, Astrid D Bakker, Teun J de Vries Cells Derived from Human Long Bone Appear More Differentiated and More Actively Stimulate Osteoclastogenesis Compared to Alveolar Bone-Derived Cells Int J Mol Sci.; 21(14):5072, 2020
87. Chul Son, Moon Sil Choi, Joo-Cheol Park Different Responsiveness of Alveolar Bone and Long Bone to Epithelial-Mesenchymal Interaction-Related Factor JBMR Plus.; 4(8):e10382, 2020
88. Xue Yang, Jun Jiang, Ling Zhou, Song Wang, Mengjiao He, Kai Luo, Yuling Chen, Xiongcheng Xu Osteogenic and angiogenic characterization of mandible and femur osteoblasts J Mol Histol.; Apr;50(2):105-117, 2019
89. WHO age definition: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
90. Pier Carmine Passarelli, Carlo Lajolo, Guido Pasquantonio, Giuseppe D'Amato, Raffaella Docimo, Fernando Verdugo, Antonio D'Addona Influence of mandibular third molar surgical extraction on the periodontal status of adjacent second molars J Periodontol.; 90(8):847-855, 2019
91. C F Kugelberg Periodontal healing two and four years after impacted lower third molar surgery. A comparative retrospective study Int J Oral Maxillofac Surg.; 19(6):341-5, 1990
92. C F Kugelberg, U Ahlström, S Ericson, A Hugoson, S Kvint Periodontal healing after impacted lower third molar surgery in adolescents and adults. A prospective study Int J Oral Maxillofac Surg.; 20(1):18-24, 1991
93. C F Kugelberg, U Ahlström, S Ericson, A Hugoson, H Thilander The influence of anatomical, pathophysiological and other factors on periodontal healing after impacted lower third molar surgery. A multiple regression analysis J Clin Periodontol.; 18(1):37-43, 1991
94. Ken-Chung Chen, Tzer-Min Lee, Nai-Wei Kuo, Cheng Liu, Chih-Ling Huang Nano/Micro Hierarchical Bioceramic Coatings for Bone Implant Surface Treatments Materials (Basel).; 13(7):1548, 2020
95. Kuan-Chen Kung, Tzer-MinLee, Truan-Sheng Lui Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation Journal of Alloys and Compounds; 508(2): 384-390, 2010
96. Kuan-Chen Kung, Tzer-Min Lee, Jia-lin Chen, Truan-Sheng Lui Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation Surface and Coatings Technology; 205(6): 1714-1722, 2010