| 研究生: |
林瑞進 Lin, Jui-Chin |
|---|---|
| 論文名稱: |
具二次側追蹤定位及自動節能之無線充電系統設計 Design of Secondary Locating and Automatic Power Saving for Wireless Charging System |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 自動節能 、二次側追蹤定位 、無線電力傳輸 |
| 外文關鍵詞: | power saving, secondary locating, wireless power transfer |
| 相關次數: | 點閱:90 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在以共振磁能傳輸為架構,將無線電力傳輸技術應用於可充電之行動裝置,並提出一無線充電系統。本系統以自動節能切換和二次側追蹤定位為主軸,結合單晶片和無線通訊模組做充電系統之控制與管理。無線充電系統在共振磁能之發射上只具有單一方向性,無法對其它方向之二次側待充物充電,本研究以此為考量利用紅外線具單一指向性和可反射性之性質並輔以步進馬達帶動一次側線圈旋轉,以對二次側追蹤定位,為了對不同距離遠近之二次側充電,系統採用自動節能功率切換方式,控制一次側開啟不同層級功率,並針對不同距離二次側供給不同大小之能量,以達節能之功效。本系統設計之自動功率切換開啟層級分為三級,傳輸效率最大為19.86 %,二次側於 10 cm所接收之功率為 136.64 mW。為了達到最佳之定位效果,當二次側擺放於 20~140 ˚之範圍內時,定位誤差角度為 6 ˚以內。
This research based on the structure of resonance magnetic field energy transmission proposes a wireless charging system applied in portable electronic devices. The system focuses on power saving and secondary locating. Furthermore, it also combines the microcontroller and wireless communication module for charging system control and management. Due to the reason of single orientation, the wireless charging system can not charge devices in other directions. As a result, the system adopts infrared and step motor in the primary coil to locate the secondary device. For different charging distances, the system makes use of auto power saving to control the levels of primary power. The function of power scaling in the system can be divided into three levels. Each level can provide proper energy for the secondary devices at different positions. The maximum power efficiency is 19.86 %, and the secondary receiving power is 136.64 mW at 10 cm. Besides, in order to achieve the optimal performance of the locating function, the secondary device is put in the range of 20 to 140 degrees, and the error of the locating function is below 6 degrees.
[1] S. Y. R. Hui and W. C. Ho, “A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment,” IEEE Transactions on Power Electronics, vol. 20, no. 3, pp. 620-627, May 2005.
[2] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a Contactless Battery Charger for Cellular Phone,” IEEE Transactions on Power Electronics, vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[3] C. H. Hu, C. M. Chen, Y. S. Shiao, T. J. Chan, and T. R. Chen, “Development of a Universal Contactless Charger for Handheld Devices,” IEEE International Symposium on Industrial Electronics, pp. 99-104, Jun. 2008.
[4] C. H. Hu, C. M. Chen, Y. S. Shiao, T. J. Chan, and T. R. Chen, “Study of a Contactless Power Transmission System,” IEEE International Symposium on Industrial Electronics, pp. 293-298, Jun. 2008.
[5] G. B. Joung and B. H. Cho, “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 1013-1022, Nov. 1998.
[6] “ IEEE News Releases ” , http://www.ieee.org/web/aboutus/news/2009/
11march.html
[7] J. Hirai, T. W. Kim, and A. Kawamura, “Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information,” IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 335-345, Mar. 2000.
[8] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers,” IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520-527, Jun. 2003.
[9] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and Implementation of Low-Profile Contactless Battery Charger Using Planar Printed Circuit Board Windings as Energy Transfer Device,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 140-147, Feb. 2004.
[10] Y. Jang and M. M. Jovanovic, “A New Soft-Switched Contactless Battery Charger with Robust Local Controllers,” The 25th International Telecommunications Energy Conferences, pp. 473-479, Oct. 2003.
[11] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically Coupled Systems for Power Transfer to Electric Vehicles,” Proceedings of 1995 International Conference on Power Electronics and Drive Systems, vol. 2, pp. 797-801, Feb. 1995.
[12] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A New Contactless Power-Signal Transmission Device for Implanted Functional Electrical Stimulation,” IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2964-2966,Jul. 2004.
[13] K. M. Z. Shams and M. Ali, “Wireless Power Transmission to a Buried Sensor in Concrete,” IEEE Sensors Journal, vol. 7, no. 12, pp. 1573-1577, Dec. 2007.
[14] J. Gao, “Traveling Magnetic Field for Homogeneous Wireless Power Transmission,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 507-515, Jan. 2007.
[15] “SplashPad Charging Bases” , http://www.splashpower.com/Overview/Charging
_bases.html
[16] L. Collins, “Cutting the Cord,” Engineering & Technology, vol. 2, no. 6, pp. 30-33, Jun. 2007.
[17] A. Kurs, A. Karalis, and R. Moffatt, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science, vol. 317, pp. 83-86, Jul. 2007.
[18] “Intel’s Wireless Power” , http://www.danielfischer.com/2008/08/22/
intels-wireless-power-is-not-new-is-it/
[19] W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, Sep. 1984.
[20] J. O. McSpadden and J. C. Mankins, “Space Solar Power Programs and Microwave Wireless Power Transmission Technology,” IEEE Microwave Magazine, vol. 3, no. 4, pp. 46-57, Dec. 2002.
[21] Griffiths and J. David, “Introduction to Electrodynamics,” Prentice Hall.
[22] A. S. Ghafari and A. Alasty, “Design and Real-Time Experimental Implementation of Gain Scheduling PID Fuzzy Controller for Hybrid Stepper Motor in Micro-Step Operation,” Proceedings of the IEEE International Conference on Mechatronics, pp. 421-426, Jun. 2004.
[23] F. Betin, D. Pinchon, and G. A. Capolino, “Fuzzy Logic Applied to Speed Control of a Stepping Motor Drive,” IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 610-622, Jun. 2000.
[24] R. Haipen and L. Ding, “A Novel Digital Position Servo System Using DSP and Fuzzy PID,” Proceedings of the Fifth International Conference on Electrical Machines and Systems, vol. 2, pp. 722-725, Aug. 2001.
[25] K. Laid, X. Dianguo, and S. Jingzhuo, “Vector Control of Hybrid Stepping Motor Position Servo System Using Neural Network Control,” The 27th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1504-1508, Dec. 2001.
[26] P. Melin and O. Castillo, “Intelligent System for Control of a Stepping Motor Drive Using a Hybrid Neuro-Fuzzy Approach,” Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, vol.1, pp. 305-309, Jul. 2002.