簡易檢索 / 詳目顯示

研究生: 劉彥煌
Liu, Yen-Huang
論文名稱: 高精度量子穩定疊加態之準絕熱逆向調制
Robust Superposition of Quantum States with High-Fidelity by Quasiadiabatic Inverse Engineering
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 37
中文關鍵詞: 同調量子疊加態準絕熱絕熱捷徑
外文關鍵詞: coherent superposition of quantum states, quasiadiabaticity, shortcuts to adiabaticity
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在二能階量子系統下,藉由準絕熱逆向調制的方法達到高精度且穩定的量子疊加態。在準絕熱條件(quasiadiabatic conditions)狀況下,量子態在量子系統傳遞時,對系統的參數有良好的穩定度;也就是說,量子態不容易被外在的其他因素所影響。逆向調制(invariant-based inverse engineering)則是一種能加快量子絕熱態在量子系統傳遞速度的方法;換句話說,量子系統維持在絕熱條件時,需要長久的時間傳遞到達特定的量子態,利用逆向調制能有效地縮短所需的時間,並準確地傳遞到特定的量子態。我們將準絕熱條件加入到逆向調制的方法中,形成出另一種絕熱捷徑的方法,不僅能縮短量子態傳遞到特定量子態的時間,也能在量子態傳遞時有良好的穩定度,我們稱之為準絕熱逆向調制(quasiadiabatic inverse engineering)。

    In this thesis, we devote efforts to discussing effects of the quasiadiabatic conditions onto the adiabatic criterion in the two-level system, and create the quantum evolution that is robust against the systematic errors for designing a coherent superposition of quantum states. At the same time, through the invariant-based inverse engineering and the quasiadiabatic conditions, we can reduce required time of the evolution and obtain the desired states by setting the specific boundary conditions. Finally, we successfully produce a new kind of shortcuts to adiabaticity, quasiadiabatic inverse engineering.

    Table of Contents 中文摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures v Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Introduction 2 1.3 Organization of the Thesis 7 Chapter 2 Theoretical Analysis 8 2.1 Quantum Dynamics in Two-Level System 8 2.2 Adiabatic Transition in Two-Level System 11 2.3 Shortcuts to Adiabaticity in Two-Level System by Inverse Engineering 12 2.4 Quasiadiabatic Inverse Engineering 14 2.5 Quantum Detection 17 Chapter 3 Simulation Results and Discussion 20 3.1 Results of Parameterizations 20 3.2 Time Evolution of Population 25 3.3 Robustness against Systematic Errors 28 Chapter 4 Conclusion 35 Reference 36

    Reference
    [1] K. Bergmann, H. Theuer, B. Shore, Coherent population transfer among quantum states of atoms and molecules, Reviews of Modern Physics, 70 (1998) 1003.
    [2] N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Laser-induced population transfer by adiabatic passage techniques, Annual review of physical chemistry, 52 (2001) 763-809.
    [3] P. Král, I. Thanopulos, M. Shapiro, Colloquium: Coherently controlled adiabatic passage, Reviews of modern physics, 79 (2007) 53.
    [4] M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms, Reviews of Modern Physics, 82 (2010) 2313.
    [5] D. Daems, S. Guérin, N. Cerf, Quantum search by parallel eigenvalue adiabatic passage, Physical Review A, 78 (2008) 042322.
    [6] S. Masuda, K. Nakamura, Fast-forward problem in quantum mechanics, Physical Review A, 78 (2008) 062108.
    [7] S. Masuda, K. Nakamura, Fast-forward of adiabatic dynamics in quantum mechanics, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 2009, pp. rspa20090446.
    [8] E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, J. Muga, Shortcuts to adiabaticity: Fast-forward approach, Physical Review A, 86 (2012) 013601.
    [9] E. Torrontegui, S. Martínez-Garaot, M. Modugno, X. Chen, J. Muga, Engineering fast and stable splitting of matter waves, Physical Review A, 87 (2013) 033630.
    [10] A. Khujakulov, K. Nakamura, Scheme for accelerating quantum tunneling dynamics, Physical Review A, 93 (2016) 022101.
    [11] G. Della Valle, G. Perozziello, S. Longhi, Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions, Journal of Optics, 18 (2016) 09LT03.
    [12] X. Chen, A. Ruschhaupt, S. Schmidt, A. Del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Physical review letters, 104 (2010) 063002.
    [13] A. Ruschhaupt, X. Chen, D. Alonso, J. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New Journal of Physics, 14 (2012) 093040.
    [14] X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Guérin, J. Muga, Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors, Physical Review A, 88 (2013) 033406.
    [15] N.V. Vitanov, B.W. Shore, Designer evolution of quantum systems by inverse engineering, Journal of Physics B: Atomic, Molecular and Optical Physics, 48 (2015) 174008.
    [16] S.-Y. Tseng, Robust coupled-waveguide devices using shortcuts to adiabaticity, Optics letters, 39 (2014) 6600-6603.
    [17] S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, X. Chen, Short and robust directional couplers designed by shortcuts to adiabaticity, Optics express, 22 (2014) 18849-18859.
    [18] X. Chen, E. Torrontegui, J. Muga, Lewis-Riesenfeld invariants and transitionless quantum driving, Physical Review A, 83 (2011) 062116.
    [19] K. Paul, A.K. Sarma, Efficient shortcut techniques in evanescently coupled waveguides, in: Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012056..
    [20] S. Longhi, Quantum‐optical analogies using photonic structures, Laser & Photonics Reviews, 3 (2009) 243-261.
    [21] S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, T. Busch, J.G. Muga, Fast quasiadiabatic dynamics, Physical Review A, 92 (2015).
    [22] M. Ndong, G. Djotyan, A. Ruschhaupt, S. Guérin, Robust coherent superposition of states by single-shot shaped pulse, Journal of Physics B: Atomic, Molecular and Optical Physics, 48 (2015) 174007.

    下載圖示 校內:2022-07-07公開
    校外:2022-07-07公開
    QR CODE