| 研究生: |
吳婕瑜 Wu, Jie-Yu |
|---|---|
| 論文名稱: |
高碳高氮廢水生物處理實廠功能評估及效能提升之研究 Performance evaluation and efficiency improvement for a full-scale biological treatment plant treating high-strength carbon and nitrogen wastewater |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 回收系統 、生物降解性 、硝化作用 、脫硝作用 、初始食微比 |
| 外文關鍵詞: | reclaim system, biodegradability, nitrification, denitrification, S0/X0 ratio |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業中所使用到的有機溶劑皆含有許多電子級的化學品,例如N-甲基吡咯烷酮(NMP)、乙二醇單丁醚(BDG)、環戊酮(CPN)等,而近年來這些化學品的回收系統已被廣泛的使用,雖然回收系統能回收有機溶劑中大部分的NMP、BDG、CPN等電子級化學品,但經由回收系統所產生的殘餘廢液,仍含有高濃度的有機碳和有機氮,若無妥善處理,將會對環境造成一定的破壞。因此本研究將針對某化學製造廠所提供的NMP、BDG、CPN三種殘餘廢液,探討生物處理高碳高氮廢液的可行性,其中包括於厭氧、好氧及缺氧狀態下,進行殘餘廢液中高濃度COD的降解效率試驗,以及利用硝化和脫硝批次試驗,找到處理高濃度有機氮的最佳操作條件,並且藉由分子生物技術,解析實廠生物除氮系統中的優勢微生物族群,以提高整體生物除氮的效率。在厭氧、缺氧及好氧條件下測試實廠三股殘餘廢液中高濃度COD的降解效率,結果顯示在厭氧條件下,殘餘廢液中的COD皆無法被微生物有效去除,而NMP殘餘廢液中的COD於好氧與缺氧條件下皆能被微生物有效降解,在初始食微比分別為2.5和1.5的條件下,可得到最佳的COD比降解速率,而CPN殘餘廢液則於好氧條件下有較佳的COD去除效率。在硝化批次試驗部分,以硝化菌還未經馴養為前提,結果顯示實廠硝化菌對氨氮的最大負荷濃度為500 mg-N/L,一旦氨氮進流濃度超過750 mg-N/L,則會有亞硝累積的問題發生,而其最佳pH操作範圍為7.5-8.0。而從脫硝批次結果顯示,實廠脫硝菌在未經馴養前,對硝酸的最大負荷濃度可達2,000 mg-N/L,另外脫硝菌能有效利用實廠中NMP殘餘廢液作為碳源,以進行脫硝作用達到完全除氮的目的。
The organic solvents used in the semiconductor industry contain many electronic grade chemicals such as n-methyl-2-pyrrolidone (NMP), 2-butoxyethanol (BDG) and cyclopentanone (CPN) and the reclaim systems for these chemicals have been widely applied in the chemical manufacturing industry. Although the reclaim system can recover most of NMP, BDG and CPN, however, the distilled residues still contains high concentration of organic carbon and nitrogen. In this study, the biodegradability of high-strength carbon and nitrogen wastewaters including NMP, BDG and CPN distilled residues provided by chemical manufacturing plant was investigated. Batch experiments were designed and conducted to test the efficiency of COD degradation under anaerobic, aerobic and anoxic conditions. Results indicate that COD removal in all three NMP, BDG and CPN distilled residues were poor under anaerobic condition. COD in NMP distilled residues was more easily to be degraded under aerobic or anoxic condition, with the highest specific COD degradation rate of 25.2 and 11.8 mg/h-gVSS when S0/X0 ratios were 2.5 and 1.5, respectively. On the other hand, COD in CPN distilled residues could also be removed aerobically with high efficiency. Besides, batch experiments for the nitrification and denitrification were conducted to find the optimum operant conditions for nitrogen removal. Without prior adaptation, the optimum ammonium loading concentration for nitrifying microorganisms was 500 mg-N/L, while nitrite was accumulated once the ammonium influent concentration exceeded 750 mg-N/L. Batch results also indicate that the optimum pH for nitrification was between 7.5 and 8.0. As for the denitrification, the optimum nitrate loading concentration for denitrifying microorganisms was about 2,000 mg-N/L, while COD in the NMP distilled residues was applicable to be as carbon source on denitrification process. Moreover, molecular biotechnology was applied to understand the dominant microbial community in the biological nitrogen removal system.
1. AHMED, F.E. Quantitative real-time RT-PCR: Application to carcinogenesis. Cancer Genomics-Proteomics, 2(6), 317-332. 2005.
2. Ahn, Y.-H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 41(8), 1709-1721. 2006.
3. Akunna, J.C., Bizeau, C., Moletta, R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research, 27(8), 1303-1312. 1993.
4. Akunna, J.C., Bizeau, C., Moletta, R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations: ammonification, denitrification and methanogenic activities. Environmental technology, 15(1), 41-49. 1994.
5. Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., Domíguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 22(9), 477-485. 2004.
6. Arsova, L. Anaerobic digestion of food waste: Current status, problems and an alternative product. Department of earth and Environmental Engineering foundation of Engineering and Applied Science Columbia University. 2010.
7. BARRITT, N.W. THE NITRIFICATION PROCESS IN SOILS AND BIOLOGICAL FILTERS. Annals of Applied Biology, 20(1), 165-184. 1933.
8. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V. The IWA anaerobic digestion model no 1 (ADM1). Water Science and Technology, 45(10), 65-73. 2002.
9. Boon, B., Laudelout, H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochemical Journal, 85(3), 440. 1962.
10. Braker, G., Tiedje, J.M. Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol., 69(6), 3476-3483. 2003.
11. Buswell, A., Mueller, H. Mechanism of methane fermentation. Industrial & Engineering Chemistry, 44(3), 550-552. 1952.
12. Buswell, A., Shiota, T., Lawrence, N., Van Meter, I. Laboratory studies on the kinetics of the growth of Nitrosomonas with relation to the nitrification phase of the BOD test. Applied microbiology, 2(1), 21. 1954.
13. Calvó, L., Garcia-Gil, L.J. Use of amoB as a new molecular marker for ammonia-oxidizing bacteria. Journal of microbiological methods, 57(1), 69-78. 2004.
14. Carrera, J., Baeza, J., Vicent, T., Lafuente, J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 37(17), 4211-4221. 2003.
15. Carrera, J., Jubany, I., Carvallo, L., Chamy, R., Lafuente, J. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems. Process Biochemistry, 39(9), 1159-1165. 2004.
16. Chan, Y.J., Chong, M.F., Law, C.L., Hassell, D. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1-2), 1-18. 2009.
17. Chang, N. Making a progress to speed up the nitrification and denitrification processes in novel biosorption activated media: Can archaea be in concert with anammox. Journal of Bioprocessing and Biotechniques, 1(2). 2011.
18. Cheng, S.-S., Wen-Chin, C. Organic carbon supplement influencing performance of biological nitritification in a fluidized bed reactor. Water Science and Technology, 30(11), 131. 1994.
19. Ebeling, J.M., Timmons, M.B., Bisogni, J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. 2006.
20. Engel, M.S., Alexander, M. Growth and autotrophic metabolism of Nitrosomonas europaea. Journal of bacteriology, 76(2), 217. 1958.
21. Etchebehere, C., Errazquin, I., Barrandeguy, E., Dabert, P., Moletta, R., Muxí, L. Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiology Ecology, 35(3), 259-265. 2001.
22. Fernández-Nava, Y., Maranon, E., Soons, J., Castrillón, L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresource Technology, 99(17), 7976-7981. 2008.
23. Fernandez, M. Metagenomics approaches to evaluate microbial diversity in New Zealand aquifers. 2012.
24. Freitag, T.E., Chang, L., Clegg, C.D., Prosser, J.I. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl. Environ. Microbiol., 71(12), 8323-8334. 2005.
25. Guisasola, A., Petzet, S., Baeza, J.A., Carrera, J., Lafuente, J. Inorganic carbon limitations on nitrification: experimental assessment and modelling. Water research, 41(2), 277-286. 2007.
26. Hallin, S., Lindgren, P.-E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol., 65(4), 1652-1657. 1999.
27. Haug, R.T., McCarty, P.L. Nitrification with submerged filters. Journal (Water Pollution Control Federation), 2086-2102. 1972.
28. Hellinga, C., Van Loosdrecht, M., Heijnen, J. Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and computer modelling of dynamical systems, 5(4), 351-371. 1999.
29. Herbert, R. Nitrogen cycling in coastal marine ecosystems. FEMS microbiology reviews, 23(5), 563-590. 1999.
30. Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol., 63(8), 3233-3241. 1997.
31. Higuchi, R., Fockler, C., Dollinger, G., Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Bio/technology, 11(9), 1026. 1993.
32. Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and bioprocess engineering, 20(4), 643-651. 2015.
33. Junier, P., Kim, O.-S., Molina, V., Limburg, P., Junier, T., Imhoff, J.F., Witzel, K.-P. Comparative in silico analysis of PCR primers suited for diagnostics and cloning of ammonia monooxygenase genes from ammonia-oxidizing bacteria. FEMS microbiology ecology, 64(1), 141-152. 2008.
34. Junier, P., Molina, V., Dorador, C., Hadas, O., Kim, O.-S., Junier, T., Witzel, K.-P., Imhoff, J.F. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied microbiology and biotechnology, 85(3), 425-440. 2010.
35. Knowles, R. Denitrification. Microbiological reviews, 46(1), 43. 1982.
36. Komorowska-Kaufman, M., Majcherek, H., Klaczyński, E. Factors affecting the biological nitrogen removal from wastewater. Process Biochemistry, 41(5), 1015-1021. 2006.
37. Kraft, B., Strous, M., Tegetmeyer, H.E. Microbial nitrate respiration–genes, enzymes and environmental distribution. Journal of biotechnology, 155(1), 104-117. 2011.
38. López-Gutiérrez, J.C., Henry, S., Hallet, S., Martin-Laurent, F., Catroux, G., Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of Microbiological Methods, 57(3), 399-407. 2004.
39. Lam, P., Kuypers, M.M. Microbial nitrogen cycling processes in oxygen minimum zones. Annual review of marine science, 3, 317-345. 2011.
40. Le, H., Jantarat, N., Khanitchaidecha, W., Ratananikom, K., Nakaruk, A. Development of sequencing batch reactor performance for nitrogen wastewater treatment. Microbial and Biochemical Technology, 7, 363-366. 2015.
41. Lees, H. The biochemistry of the nitrifying bacteria. 1954.
42. Loveless, J., Painter, H. The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge. Microbiology, 52(1), 1-14. 1968.
43. Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H., Wagner, M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 68(10), 5064-5081. 2002.
44. Lu, H., Chandran, K., Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water research, 64, 237-254. 2014.
45. Ludzack, F., Ettinger, M. Controlling operation to minimize activated sludge effluent nitrogen. Journal (Water Pollution Control Federation), 920-931. 1962.
46. Matějů, V., Čižinská, S., Krejčí, J., Janoch, T. Biological water denitrification—a review. Enzyme and microbial technology, 14(3), 170-183. 1992.
47. Meyerhof, O. Untersuchungen über den Atmungsvorgang nitriflzierender Bakterien. Pflügers Archiv European Journal of Physiology, 166(5), 240-280. 1917.
48. Muyzer, G., De Waal, E.C., Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59(3), 695-700. 1993.
49. Muyzer, G., Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73(1), 127-141. 1998.
50. Nm, D., Nyaga Mn, E., O, G., K, F., Omara, J., K, J. Evaluation of Organic Carbon from Anaerobic Sequencing Batch Reactor Effluent as a Carbon Source for Denitrification. 2017.
51. Norton, J.M., Alzerreca, J.J., Suwa, Y., Klotz, M.G. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of microbiology, 177(2), 139-149. 2002.
52. Okabe, S., Oozawa, Y., Hirata, K., Watanabe, Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. Water Research, 30(7), 1563-1572. 1996.
53. Painter, H., Loveless, J. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water research, 17(3), 237-248. 1983.
54. Park, S., Bae, W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochemistry, 44(6), 631-640. 2009.
55. Park, S., Bae, W., Chung, J., Baek, S.-C. Empirical model of the pH dependence of the maximum specific nitrification rate. Process Biochemistry, 42(12), 1671-1676. 2007.
56. Park, S., Bae, W., Rittmann, B.E. Operational boundaries for nitrite accumulation in nitrification based on minimum/maximum substrate concentrations that include effects of oxygen limitation, pH, and free ammonia and free nitrous acid inhibition. Environmental science & technology, 44(1), 335-342. 2009.
57. Parker, D.S. Process Design Manual for Nitrogen Control. 1975.
58. Paul, E.A. Soil microbiology, ecology and biochemistry. Academic press. 2014.
59. Quevedo, M., Guynot, E., Muxí, L. Denitrifying potential of methanogenic sludge. Biotechnology letters, 18(12), 1363-1368. 1996.
60. Regan, J.M., Harrington, G.W., Noguera, D.R. Ammonia-and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol., 68(1), 73-81. 2002.
61. Renshaw, M.A., Olds, B.P., Jerde, C.L., McVeigh, M.M., Lodge, D.M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction. Molecular ecology resources, 15(1), 168-176. 2015.
62. Rimer, A.E., Woodward, R.L. Two-stage activated sludge pilot-plant operations at Fitchburg, Massachusetts. Journal (Water Pollution Control Federation), 101-116. 1972.
63. Rittmann, B.E., McCarty, P.L. Environmental biotechnology: principles and applications. Tata McGraw-Hill Education. 2012.
64. Rotthauwe, J.-H., Witzel, K.-P., Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol., 63(12), 4704-4712. 1997.
65. Servizi, J., Gordon, R. Acute lethal toxicity of ammonia and suspended sediment mixtures to chinook salmon (Oncorhynchus tshawytscha). Bulletin of environmental contamination and toxicology, 44(4), 650-656. 1990.
66. Sharma, B., Ahlert, R. Nitrification and nitrogen removal. Water Research, 11(10), 897-925. 1977.
67. Sonnad, J., Goudar, C.T. Solution of the Haldane equation for substrate inhibition enzyme kinetics using the decomposition method. Mathematical and computer modelling, 40(5-6), 573-582. 2004.
68. Speece, R.E. Anaerobic biotechnology for industrial wastewater treatment. Environmental science & technology, 17(9), 416A-427A. 1983.
69. Srna, R.F., Baggaley, A. Kinetic response of perturbed marine nitrification systems. Journal (Water Pollution Control Federation), 472-486. 1975.
70. Throbäck, I.N., Enwall, K., Jarvis, Å., Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS microbiology ecology, 49(3), 401-417. 2004.
71. Van Hulle, S.W., Volcke, E.I., Teruel, J.L., Donckels, B., van Loosdrecht, M.C., Vanrolleghem, P.A. Influence of temperature and pH on the kinetics of the Sharon nitritation process. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(5), 471-480. 2007.
72. Villaverde, S., Garcia-Encina, P., Fdz-Polanco, F. Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Research, 31(5), 1180-1186. 1997.
73. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G. Human alteration of the global nitrogen cycle: sources and consequences. Ecological applications, 7(3), 737-750. 1997.
74. Wagner, M., Rath, G., Koops, H.-P., Flood, J., Amann, R. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Science and Technology, 34(1-2), 237-244. 1996.
75. Webster, G., Embley, T.M., Prosser, J.I. Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Appl. Environ. Microbiol., 68(1), 20-30. 2002.
76. Zayed, G., Winter, J. Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification. Applied microbiology and biotechnology, 49(4), 469-474. 1998.
77. Zhang, X., Zhang, H., Ye, C., Wei, M., Du, J. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors. Bioresource Technology, 189, 302-308. 2015a.
78. Zhang, X., Zhang, J., Hu, Z., Xie, H., Wei, D., Li, W. Effect of influent COD/N ratio on performance and N 2 O emission of partial nitrification treating high-strength nitrogen wastewater. RSC Advances, 5(75), 61345-61353. 2015b.
79. 張榮峯. 影響廢光阻稀釋劑蒸餾回收率之因子探討. 中央大學環境工程研究所碩士在職專班學位論文, 1-81. 2011.
80. 楊雅斐. 三段生物程序中好氧硝化槽功能評估與分生檢測生態研究. 成功大學環境工程學系學位論文, 1-170. 2004.
81. 謝福環. 特殊有機廢溶劑純化再利用之研究. 中央大學環境工程研究所碩士在職專班學位論文, 1-136. 2007.