簡易檢索 / 詳目顯示

研究生: 簡士軒
Chien, Shih-Hsuan
論文名稱: 基於順應控制與人手係數補償之工業用機械手臂教導器研究
Study on Compliance Control and Human Hand Coefficient-Based Compensation of Teach Pendants on Industrial Manipulators
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 機械手臂人機協同順應控制補償器
外文關鍵詞: Robot Manipulator, Human-Robot Interaction, Compliance Control, Compensator
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來自動化的發展越趨成熟,機器人的應用場合也變得相當普遍,因此人機協同的各種功能也成為熱門研究重點之一。本論文分別研究並探討順應控制下的導納控制與阻抗控制應用於機械手臂教導器之成果。在執行教導器任務時,首先需取得機械手臂所受到的外力資訊,通常由力量感測器或觀測器取得,本論文研究了四種外力估測方法,並觀察各種方法之優缺點。一般而言,順應控制透過控制器的設計將機械手臂末端點模擬為一質量-阻尼系統,讓使用者能順暢地拉動並進行教導。本論文所設計之基於順應控制機械手臂教導器除了基本的教導功能外,也可藉由使用者的速度變化調整阻尼係數來增進拉動軌跡的精確性。此外,本論文並研究人手係數與人機互動下參數穩定空間,再設計基於不同人手係數之線上補償器,減少使用者教導任務所需時間與出力。最後,本論文將以上所討論之各種方法實現於六軸機械手臂,實驗結果顯示本論文所設計之基於順應控制機械手臂教導器確實可行。

    Robot manipulators have become widely used in recent years, particularly in areas such as human-robot interaction. This thesis implements two compliance control structures – impedance control and admittance control for teach pendants of robot manipulators and assess their performance. The external force information which is essential in teaching tasks can be acquired by force sensors or observers. This thesis implements four kinds of external force observers and compares their advantages and drawbacks. In general, to facilitate the operator’s teaching task, a compliance control scheme is designed to control the motion of the manipulator’s end-effector so that its behavior can be described as a mass-damper system. By doing so, the operator could drag the end-effector smoothly along any trajectories. In addition to the basic function of teach pendant, this thesis also discusses the adjustment of damping parameters based on velocity variations to improve the accuracy of moving along a desired trajectory. In addition, this thesis studies the stability conditions under human-robot interaction by taking into account human arm coefficient. A fuzzy RBF impedance compensator based on the human arm coefficient is then designed to reduce the task time and energy consumption of the teaching task. Finally, all the methods discussed in this thesis are applied to a real 6-DOF industrial manipulator. Experimental results indicate that the compliance control based teach pendent developed in this thesis indeed is feasible.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 4 第二章 機械手臂運動學及動態方程式 5 2.1 順向運動學 5 2.2 賈可比矩陣 7 2.3 機械手臂動態方程式 8 2.4 系統動態模型參數鑑別 12 第三章 外力矩估測法 14 3.1 外力矩估測法簡介 14 3.2 基於閉迴路干擾量觀測器之外力矩估測法 14 3.3 基於廣義動量之外力矩估測法 16 3.4 基於擴增狀態觀測器之外力矩估測法 18 3.5 基於改良式擴增狀態觀測器之外力矩估測法 19 3.6 外力矩空間轉換 20 第四章 基於順應控制之教導器研究 22 4.1 順應控制簡介 22 4.2 教導器設計 23 4.2.1 基於阻抗控制之教導器 24 4.2.2 基於導納控制之教導器 25 4.3 基於人手振動觀測器之導納參數調整 25 4.4 導納控制下基於人手係數量測之補償器設計 28 4.4.1 基於類神經網路架構之使用者意圖估測器 30 4.4.2 離線人手阻抗係數量測 32 4.4.3 人機互動下參數穩定空間 33 4.4.4 基於Fuzzy RBF線上估測人手阻抗係數之補償器設計 36 第五章 實驗設備介紹與實作結果 41 5.1實驗設備介紹 41 5.2實驗一:外力估測法比較 46 5.3實驗二:基於人手振動觀測器之參數調整實驗 50 5.4實驗三:人手係數量測 53 5.4.1 使用者意圖觀測器實驗 53 5.4.2 離線人手阻抗係數量測實驗 58 5.4.3 人機互動參數穩定空間實驗 64 5.5實驗四:線上補償器實驗與綜合比較 64 5.5.1 波德圖模擬 64 5.5.2 畫圖實驗 66 第六章 結論與建議 69 6.1 結論 69 6.2 未來展望與建議 70 參考文獻 71

    [1] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” International Journal of Robotic Research, vol. 5, no. 3, pp. 101-119, Sep. 1986.
    [2] F. Caccavale and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Engineering Practice, vol. 2, no. 6, pp. 1039-1050, Dec. 1994.
    [3] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, New York, NY: McGraw-Hill, 1987, pp. 84-96.
    [4] S. P. Chan, “A disturbance observer for robot manipulators with application to electronic components assembly,” IEEE Transactions on Industrial Electronics, vol. 42, no. 5, pp. 487-493. Oct. 1995
    [5] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Collision detection and safe reaction with the DLR-III lightweight robot arm,” in Proceedings of the IEEE/RSJ International Conference Intelligent Robots System, 2006, pp. 1623–1630.
    [6] Z. Li, B. Huang, Z. Ye, M. Deng, and C. Yang, “Physical human–robot interaction of a robotic exoskeleton by admittance control,” IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9614-9624, 2018.
    [7] P. D. Labrecque, T. Laliberte, S. Foucault, M. E. Abdallah, and C. Gosselin, “uMan: A low-impedance manipulator for human–robot cooperation based on underactuated redundancy,” IEEE/ASME Trans. on Mechatronics, vol. 22, no. 3, pp. 1401-1411, 2017.
    [8] H. Koch, A. Konig , A. Weigl-Seitz, K. Kleinmann, and J. Suchy, “Multi sensor contour following with vision force and acceleration sensors for an industrial robot,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 2, pp. 268-280, Feb. 2013.
    [9] W. Chen, J. Yang, L. Guo and S. Li, “Disturbance-observer-based control and related methods—an overview,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083-1095, Feb. 2016.
    [10] M. J. Kim and W. K. Chung, “Disturbance-observer-based pd control of flexible joint robots for asymptotic convergence,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1508–1516, 2015.
    [11] C.-J. Chen, M.-Y. Cheng, and K.-H. Su, “Observer-based impedance control and passive velocity control of power assisting devices for exercise and rehabilitation,” in Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 6502-6507.
    [12] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Collision detection and safe reaction with the dlr-iii lightweight manipulator arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2006, pp. 1623–1630
    [13] S. D. Lee, M. C. Kim, and J. B. Song, “Sensorless collision detection for safe human-robot collaboration,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sept 2015, pp. 2392–2397.
    [14] C. Chen, C. Zhang, T. Hu, H. Ni, and W. Luo, “Model-assisted extended state observer-based computed torque control for trajectory tracking of uncertain robotic manipulator systems,” International Journal of Advanced Robotic Systems, vol. 15, no. 5, pp. 172, 2018.
    [15] G. Sebastian, Z. Li, V. Crocher, D. Kremers, Y. Tan, and D. Oetomo, “Interaction force estimation using extended state observers: an application to impedance-based assistive and rehabilitation robotics,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1156-1161, 2019.
    [16] T. Ren, Y. Dong, D. Wu, and K. Chen, “Collision detection and identification for robot manipulators based on extended state observer,” Control Engineering Practice, vol. 79, pp. 144-153, 2018.
    [17] S. -H. Chien, J. -H. Wang and M.-Y. Cheng, “Performance comparisons of different observer- based force-sensorless approaches for impedance control of collaborative robot manipulators,” in Proceedings of the 3rd IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Tampere, Finland, 2020, in proceedings.
    [18] H. Sadeghian, L. Villani, M. Keshmiri and B. Siciliano, “Task-space control of robot manipulators with null-space compliance,” IEEE Transactions on Robotics, vol. 30, no. 2, pp. 493–506, 2014.
    [19] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance robots,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613–624, 2016
    [20] N. Hogan, “Impedance Control: An approach to manipulation: part i: theory,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, no.1, pp. 1-24, 1985.
    [21] N. Hogan, "Stable execution of contact tasks using impedance control," in Proceedings of the 1987 IEEE International Conference on Robotics and Automation, pp. 1047-1054.
    [22] M. H. Raibert, and J.J. Craig, “Hybrid position/force control of manipulators,” Control of Robotic Devices, vol. 103, pp. 126-133, Jun. 1981.
    [23] S. Chiaverini, and L. Sciavicco, “The parallel approach to force position control of robotic manipulators,” IEEE Transactions on Robotics and Automation, vol. 9, no. 4, pp. 361-373, Aug. 1993.
    [24] F. Dimeas and N. Aspragathos, “Fuzzy learning variable admittance control for human-robot cooperation,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 4770–4775, 2014.
    [25] F. Dimeas and N. Aspragathos, “Reinforcement learning of variable admittance control for human-robot co-manipulation,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2015, pp. 1011–1016
    [26] H. Modares, I. Ranatunga, F. L. Lewis, and D. O. Popa, “Optimized assistive human–robot interaction using reinforcement learning,” IEEE Transactions on Cybernatics, vol. 46, no. 3, pp. 655–667, Mar. 2016
    [27] F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control of redundant manipulators for intuitive human–robot physical interaction,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 850–863, Aug. 2015.
    [28] Campeau-Lecours A, Otis M, Belzile P-L, Gosselin C. “A time-domain vibration observer and controller for physical human-robot interaction,” Mechatronics., vol. 36, pp.45–53, 2016.
    [29] G. Kang, H. S. Oh, J. K. Seo, U. Kim and H. R. Choi, “Variable admittance control of robot manipulators based on human intention,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1023-1032, June 2019.
    [30] Y. Li and S. S. Ge, “Human–robot collaboration based on motion intention estimation,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1007-1014, June 2014.
    [31] K. H. Lee, S. G. Baek, H. J. Lee, H. R. Choi, H. Moon and J. C. Koo, “Enhanced transparency for physical human-robot interaction using human hand impedance compensation,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2662-2670, Dec. 2018.
    [32] M. S. Erden and A. Billard, “End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping,” IEEE Transactions on Cybernetics, vol. 45, no. 6, pp. 1146-1157, June 2015.
    [33] M. S. Erden and A. Billard, “Robotic assistance by impedance compensation for hand movements while manual welding,” IEEE Transactions on Cybernetics, vol. 46, no. 11, pp. 2459-2472, Nov. 2016.
    [34] T. Tsumugiwa, R. Yokogawa and K. Hara, “Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task,” in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002, pp. 644-650 vol.1.
    [35] M. S. Erden and A. Billard, “Hand impedance measurements during interactive manual welding with a robot,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 168-179, Feb. 2015.
    [36] K. Kronander and A. Billard, “Stability considerations for variable impedance control,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1298-1305, Oct. 2016.
    [37] V. Duchaine and C. M. Gosselin, “Investigation of human-robot interaction stability using lyapunov theory,” in Proceedings of the 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 2189-2194.
    [38] F. Müller, J. Jäkel, J. Suchý and U. Thomas, “Stability of nonlinear time-delay systems describing human–robot interaction,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2696-2705, Dec. 2019.
    [39] S. P. Buerger and N. Hogan, “Complementary stability and loop shaping for improved human–robot interaction,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 232-244, April 2007.
    [40] F. Dimeas and N. Aspragathos, “Online stability in human-robot cooperation with admittance control,” IEEE Transactions on Haptics, vol. 9, no. 2, pp. 267-278, 2016.
    [41] 莊閔皓,六軸工業用機械手臂之系統鑑別與順應控制研究,碩士論文,國立成功大學電機工程學系,2016。
    [42] 劉家佑,六軸工業用機械手臂之基於順應控制教導器研究,碩士論文,國立成功大學電機工程學系,2019。
    [43] 胡智皓,選擇順應性裝配機械手臂之外力估測與順應性研究,碩士論文,國立成功大學電機工程學系,2016。
    [44] 高子洋,工業用機械手臂之阻抗控制研究,碩士論文,國立成功大學電機工程學系,2017。
    [45] 蔡依穎,用於復健任務導向訓練之穿戴式手指研發,碩士論文,國立交通大學電控工程研究所,2013。
    [46] 陳昭仁,基於觀測器之阻抗控制與被動式速度控制於手臂健身/復健裝置之應用,碩士論文,國立成功大學電機工程學系,2013。
    [47] 林聖諺,以學習演算法為基礎之中風病患關節協調訓練應用於外骨骼式上肢復健機器人,碩士論文,國立台灣大學電機工程學系,2013。
    [48] 鄒博年,自動鑽削之順應運動及力量伺服控制器設計與實作,碩士論文,國立台灣科技大學機械工程學系,2014。
    [49] 廖偉傑,機械手臂插梢裝配之智慧型阻抗控制,碩士論文,國立成功大學機械工程學系,2019。
    [50] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, Wiley, 2005.
    [51] Mitra, S., Basak, J. FRBF “A fuzzy radial basis function network,” Neural Computing & Applications, vol. 10, pp. 244–252, 2001.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE