| 研究生: |
沈道遠 Shen, Dao-Yuan |
|---|---|
| 論文名稱: |
(Mg0.95Co0.05)TiO3介電陶瓷研究及其微波應用 Researches and Microwave Applications of (Mg0.95Co0.05)TiO3 Dielectric Ceramics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 介電陶瓷 |
| 外文關鍵詞: | (Mg0.95Co0.05)TiO3 |
| 相關次數: | 點閱:42 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中將分別以V2O5及B2O3添加入(1-x)(Mg0.95Co0.05)TiO3+xCaTiO3介電陶瓷系統中以降低燒結溫度,並探討其微結構的改變;由於液相燒結的影響,當加入適量的V2O5於0.94(Mg0.95Co0.05)TiO3+0.06CaTiO3時,在燒結溫度1200 oC持溫4小時,可以得到介電特性為:介電常數(εr)為21.73,Qxf值為93700(GHz),及溫度飄移係數(τf)~1.8ppm/oC。
在元件的應用上,隨著近幾年來小型化的濾波器在行動通訊系統中已經愈來愈重要,平面型濾波器中,以高介電常數當基板可以縮小其面積;設計一個中心頻率5.8GHz的堆疊式步接阻抗帶通濾波器,分別使用FR4、Al2O3以及自己製作的介電陶瓷做為基板,利用電腦軟體模擬並與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。
In this thesis, the dielectric ceramics properties and microstructure of 1-x(Mg0.95Co0.05)TiO3-xCaTiO3 were investigated. The V2O5 and B2O3 additives lowered the sintering temperature of 1-x(Mg0.95Co0.05)TiO3-xCaTiO3 due to the liquid phase sitering. With 0.25wt% V2O5, a dielectric constant of 21.73, a Qxf value of 93700(GHz), and a temperature coefficient of resonant frquency(τf) value of 1.8ppm/oC.
In the recent, miniature filters are more much important in mobile communication systems. For planar filter structure, compact area can be obtained by a high dielectric constant substrate. To design a bandpass filter of center frequency at 5.8GHz, and based on a stacked stepped-impedance resonators. Using FR4、Al2O3 and 94MCCT+0.25wt%V2O5 be the substrate of the filter. Experimental results showed the advantages of low loss and smaller area on a high Qxf value and high relative dielectric constant substate.
[ 1 ]K. Wakino, “Recent Development of Dielectric Resonator Materials and Filters in Japan,” Ferroelectric, vol. 91, pp. 69-86, 1989.
[ 2 ]C. L. Huang, C. L. Pan and J. F. Hsu, “Dielectric Properties of (1-X)(Mg0.95Co0.05)TiO3-XCaTiO3 Ceramic System at Microwave Frequency,” Materials Research Bulletin, vol. 78, pp. 111-115, 2002
[ 3 ]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., vol. 33, pp. 5466-5470, 1994
[ 4 ]邱碧秀,電子陶瓷材料,徐氏基金會出版,中華民國,1997
[ 5 ]D. M. Pozar, Microwave Engineering, Addison-Wesley, New York, 1998
[ 6 ]D. Kajfez, “Computed Model Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, pp. 1609-1616, 1984
[ 7 ]D. Kajfez, “Basic Principle Give Understanding of Dielectric Wave-Guides and Resonators,” Microwave System News, vol. 13, pp. 152-161, 1983
[ 8 ]D. Kajfez and P. Guillon, Dielectric Resonators, Noble Pub. Book & Dis edition, 1989
[ 9 ]F. V. Lenel, “Sintering in Presence of a Liquid Phase,” Trans. Am. Inst. Mining Met. Engrs., pp. 878-905, 1948
[10]W. D. Kingery, “Densification During Sintering in Presence of a Liquid Phase,” Jpn. J. Appl. Phys., vol. 3, pp. 301-306, 1959
[11]H. S. Cannon and F. V. Lenel, Proceedings of the Plansee Seminar, ed. F. Benesovsky Metallwerk Plansee, Reutte, 1953
[12]V. N. Eremenko and Y. V. Naidich, Liquid-Phase Sintering, Consultants Bureau, 1970
[13]K. S. Hwang, Ph.D. thesis, Analysis of Initial Stage Sintering in the Solid and Liquid Phase, Rensselaer Ploytechnic Institute, Troy, New York, USA, 1984
[14]J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., pp. 406-410, 1970
[15]G. C. Kuczynski, Sintering Process, Kluwer Academic Pub, USA, 1980
[16]S. Pejovnik, D. Kolar, W. J. Huppmann and G.. Petzow, “Sintering–New Developments,” ed. by M. M. Ristic, Elsevier Scientific, Amsterdam, Netherlands, pp. 285-292, 1978
[17]R. M. German, Liquid Phase Sintering, Kluwer Academic Publishers, New York, 1986
[18]J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., no. 24, pp. 500-506, 1989
[19]K. C. Gupta, R. Garg, I. Bahl and E. Bhartis, Microstrip Lines and Slotlines, Second Edition, Artech House, Boston, 1996.
[20]E. O. Hammerstard:Proceedings of the European Microwave Conference, pp. 268-272, 1975
[21]E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans., MIT-28, pp. 513–522, 1980
[22]R. A. Pucel, D. J. Masse and C. E. Hartwig, “Losses in Microstrip”, IEEE Trans., MIT-16, pp. 342-350, 1968, Correction in IEEE Trans., MTT-16., p. 1064, 1968
[23]J. S. Hong and M. J. Lancaster, “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,” IEEE Trans. on Microwave Theory and Tech., vol. 44, pp. 2099-2109, 1996
[24]J. Helszajn, Microwave Engineering: Passive, Active, and Non-reciprocal Circuits, McGraw-Hill, New York, 1992
[25]K. Neufuss, A. Rudajevova, “Thermal Properties of the Plasma-Sprayed MgTiO3-CaTiO3 and CaTiO3,” Ceram. Int., pp. 93-97, 2002
[26]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. MTT ,vol. MTT-8, pp. 402-410, 1960
[27]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, 1970
[28]Y. Kobayashi and N. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by Dielectric Rod Resonator Method,” IEEE Trans. MTT, vol. MTT-33, pp. 586-592, 1985
[29]Y. Kobayashi and S.Tanaka, “Resonant Modes of a Dielectric Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. MTT, vol. MTT-28, pp. 1077-1085, 1980
[30]P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp. 473-476, 1985
[31]E. Shih and J. T. Kuo, “A New Compact Microstrip Stacked-SIR Bandpass Filter with Transmission Zeros,” IEEE MTT-S Digest, pp. 1077-1080, 2003
[32]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory Design and Application, Springer, USA, 2001
[33]J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory and Tech., MTT-27, pp. 44-50, 1979
[34]G. L. Matthaei, L. Young, E. M. Jones, Microwave Filter, Impedance-Matching Networks, And Coupling Structures, Artech House Publishers, USA, 1975
[35]J. T. Kuo, “Microstrip Stepped Impedance Resonator Bandpass Filter With an Extended Optimal Rejection Bandwidth,” IEEE Trans. on Microwave Theory and Tech., vol. 51, no. 5, 2003
[36]許瑞楓,(Mg0.95Co0.05)TiO3介電陶瓷之微波特性及應用,國立成功大學,碩士論文,2003
[37]沈俊旭,燒結促進劑對MCT微波介電特性之影響及其應用,國立成功大學,碩士論文,2002
[38]V. M. Ferreira, “The Effect of Cr and La on MgTiO3 and MgTiO3-CaTiO3 Microwave Dielectric Ceramics,” J. Mater. Res., vol. 12, pp. 3293-3299, 1997
[39]V. M. Ferreira and F. Azough, “Magensium Titanate Microwave Dielectric Ceramics,” Ferroelectricd, vol. 133, pp. 127-132, 1992
[40]R. E. Johnson and A. Muan, “Phase Equilibria in the System CaO-MgO Iron Oxide at 1500°C,” J. Am. Ceram. Soc., vol. 48, no. 7, pp. 359-364, 1965