| 研究生: |
李柏姿 Lee, Po-Tsu |
|---|---|
| 論文名稱: |
服務品質對語音助理科技接受與使用之影響 The impact of service quality on the technology acceptance and use of voice assistant |
| 指導教授: |
蔡欣怡
Tsai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 語音助理 、SERVQUAL模型 、科技接受模型 、服務品質 |
| 外文關鍵詞: | Voice Assistant, SERVQUAL Model, Technology Acceptance Model, Service Quality |
| 相關次數: | 點閱:15 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧語音助理技術的迅速發展,其在日常生活與商業場域中的應用逐漸普及,語音助理的服務品質成為影響使用者科技接受與行為意向的重要因素。過去對語音助理的研究多集中於功能性、人格特質或隱私問題,本研究則基於服務品質(SERVQUAL)與科技接受模型(Technology Acceptance Model, TAM),從使用者的角度出發,探討服務品質各構面對語音助理感知有用性、感知易用性、滿意度與行為意向之影響,以了解語音助理服務接受度的全面因素。
本研究以網路問卷方式蒐集資料,於2024年3月間回收354份問卷,剔除無效樣本後,最終有效樣本為319份。採用結構方程模型(SEM)進行分析。結果顯示,在服務品質構面中,保證性與同理心正向影響感知有用性;可靠性與回應性正向影響感知易用性;而隱私性對感知有用性則呈現負向影響。感知易用性進一步正向影響感知有用性,感知有用性則強烈正向影響滿意度,滿意度又正向影響行為意向。此外,本研究亦進行群組比較分析,發現世代、教育程度及使用年資等背景變項會調節各構面之間的影響力。
本研究的主要貢獻在於提出整合SERVQUAL與TAM的綜合模型,深入探討語音助理服務品質感知對使用者科技接受歷程的影響,並突顯出不同構面在不同心理路徑中所扮演的角色差異,學術理論提供新的擴展。同時,實務上亦提供開發商設計與優化語音助理服務時的具體建議,強調以「價值感知」為核心導向的開發策略,以提升使用者滿意度與持續使用意圖。最後,本研究亦針對樣本結構、資料蒐集方法與研究設計提出未來研究建議,以期提供後續研究更完善的參考基礎。
As intelligent voice assistants become increasingly integrated into daily life and commercial applications, service quality has emerged as a critical factor influencing user acceptance. While previous studies have primarily focused on functionality, personality traits, or privacy concerns, this research adopts an integrated framework combining SERVQUAL and the Technology Acceptance Model (TAM) to examine how various service quality dimensions affect perceived usefulness, perceived ease of use, satisfaction, and behavioral intention.
This research utilized an online questionnaire and use Structural Equation Modeling (SEM) to analyze the relationships among key variables. The results reveal that, among the service quality dimensions, Assurance and Empathy significantly enhance perceived usefulness, while Reliability and Responsiveness positively influence perceived ease of use. In contrast, Privacy exerts a negative effect on perceived usefulness. Additionally, the study conducted a group-differences analysis, revealing that generation, education level, and usage experience each have varying impacts on key relationships.
Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa’deh, R. e., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. a. (2022). Continued intention to use of M-Banking in Jordan by integrating UTAUT, TPB, TAM and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 120.
Aeschlimann, S., Bleiker, M., Wechner, M., & Gampe, A. (2020). Communicative and social consequences of interactions with voice assistants. Computers in Human Behavior, 112, 106466.
Ahmad, S., Bhatti, S. H., & Hwang, Y. (2020). E-service quality and actual use of e-banking: Explanation through the Technology Acceptance Model. Information Development, 36(4), 503-519.
Alan AI. (n.d.). Voice assistants: A comprehensive guide. Alan AI. https://alan.app/blog/voiceassistant-2/
Al-Sharafi, M. A., Al-Emran, M., Arpaci, I., Iahad, N. A., AlQudah, A. A., Iranmanesh, M., & Al-Qaysi, N. (2023). Generation Z use of artificial intelligence products and its impact on environmental sustainability: A cross-cultural comparison. Computers in Human Behavior, 143, 107708.
Alsabawy, A. Y., Cater-Steel, A., & Soar, J. (2016). Determinants of perceived usefulness of e-learning systems. Computers in Human Behavior, 64, 843-858.
Amazon. (2014). Meet Alexa @ Amazon: Official site. Amazon. https://www.amazon.com/meet-alexa/
Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer satisfaction, market share, and profitability: Findings from Sweden. Journal of Marketing, 58(3), 53-66.
Apple. (2011). Apple launches iPhone 4S, iOS 5 & iCloud. Apple. https://www.apple.com/newsroom/2011/10/04Apple-Launches-iPhone-4S-iOS-5-iCloud/
Aufait UX. (2024). Designing for Gen Z: How to Design for the Digital-First Generation. https://www.aufaitux.com/blog/gen-z-digital-design-strategies/
Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33.
Baber, H. (2019). Relevance of e-SERVQUAL for determining the quality of FinTech services. International Journal of Electronic Finance, 9(4), 257-267.
Baker, D. A., & Crompton, J. L. (2000). Quality, satisfaction and behavioral intentions. Annals of Tourism Research, 27(3), 785-804.
Babu, M. A., Yusuf, K. M., Eni, L. N., Jaman, S. M. S., & Sharmin, M. R. (2024). ChatGPT and generation ‘Z’: A study on the usage rates of ChatGPT. Social Sciences & Humanities Open, 10, 101163.
Bălan, C. (2023). Chatbots and voice assistants: digital transformers of the company–customer interface—a systematic review of the business research literature. Journal of Theoretical and Applied Electronic Commerce Research, 18(2), 995-1019.
Basak, S. K., Govender, D. W., & Govender, I. (2016, December). Examining the impact of privacy, Security, and trust on the TAM and TTF models for e-commerce consumers: A pilot study. In 2016 14th Annual Conference on Privacy, Security and Trust (PST) (pp. 19-26). IEEE.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 351-370.
Boulos, M. N. K., Brewer, A. C., Karimkhani, C., Buller, D. B., & Dellavalle, R. P. (2014). Mobile medical and health apps: state of the art, concerns, regulatory control and certification. Online Journal of Public Health Informatics, 5(3).
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19, 171-209.
Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296-325.
Chirchir, L. K., Aruasa, W. K., & Chebon, S. K. (2019). Perceived usefulness and ease of use as mediators of the effect of health information systems on user performance. European Journal of Computer Science and Information Technology, 7(1), 22-37.
Crede, M., Chernyshenko, O. S., Stark, S., Dalal, R. S., & Bashshur, M. (2007). Job satisfaction as mediator: An assessment of job satisfaction's position within the nomological network. Journal of Occupational and Organizational Psychology, 80(3), 515-538.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30.
Deshmukh, A. M., & Chalmeta, R. (2024). User Experience and Usability of Voice User Interfaces: A Systematic Literature Review. Information, 15(9), 579.
Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C channel satisfaction and preference: validating e-commerce metrics. Information Systems Research, 13(3), 316-333.
Dimock, M. (2019). Defining generations: Where Millennials end and Generation Z begins. Pew Research Center, 17(1), 1-7.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & Management, 36(1), 9-21.
Elgarah, W., & Falaleeva, N. (2005). Adoption of biometric technology: Information privacy in TAM.
Fida, B. A., Ahmed, U., Al-Balushi, Y., & Singh, D. (2020). Impact of service quality on customer loyalty and customer satisfaction in Islamic banks in the Sultanate of Oman. Sage Open, 10(2), 2158244020919517.
Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14.
Galin, D. (2004). Software quality assurance: from theory to implementation. Pearson education.
García, J. A. M., Gómez, C. G., López, A. T., & Schlosser, M. J. (2024). Applying the technology acceptance model to online self-learning: A multigroup análisis. Journal of Innovation & Knowledge, 9(4), 100571.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 51-90.
Ghani, M., Rahi, S., Yasin, N. M., & Alnaser, F. (2017). Adoption of internet banking: extending the role of technology acceptance model (TAM) with e-customer service and customer satisfaction. World Applied Sciences Journal, 35(9), 1918-1929.
Global Information, Inc. (2024). Voice Assistant Application Market by Offering (Solution, Services), Technology (Speech Recognition, Text-to-Speech), Deployment Mode, Application (Smart Speakers, Smartphones), Vertical, and Region - Global Forecast to 2031. https://www.gii.tw/report/ires1621628-voice-assistant-application-market-by-offering.html
Gloria. (2020). COVID-19大流行反而催生語音控制之智慧家庭市場. 科技產業資訊室. https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=16523
Google. (2016). Google Assistant: Coming soon to an assistant near you. Google. https://blog.google/products/assistant/coming-soon-assistant-near-you/
Grönroos, C. (1990). Service Management and Marketing (Vol. 27). Lexington books Lexington, MA.
Gunesekera, A. I., Bao, Y., & Kibelloh, M. (2019). The role of usability on e-learning user interactions and satisfaction: a literature review. Journal of Systems and Information Technology, 21(3), 368-394.
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (p. 197). Springer Nature.
Han, J.-H., & Sa, H. J. (2022). Acceptance of and satisfaction with online educational classes through the technology acceptance model (TAM): The COVID-19 situation in Korea. Asia Pacific Education Review, 23(3), 403-415.
Hassan, M. (2023, November 4). Validity – Types, Examples and Guide. Research Method. https://researchmethod.net/validity/
Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: an introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81-88.
Hsu, W.-C., & Lee, M.-H. (2023). Semantic technology and anthropomorphism: Exploring the impacts of voice assistant personality on user trust, perceived risk, and attitude. Journal of Global Information Management (JGIM), 31(1), 1-21.
IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0 [Computer software]. Armonk, NY: IBM Corp.
Ighomereho, S. O., Ojo, A. A., Omoyele, S. O., & Olabode, S. O. (2022). From service quality to e-service quality: Measurement, dimensions and model. arXiv preprint arXiv:2205.00055.
Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785-793.
JASP Team. (2023). JASP (Version 0.19.3) [Computer software]. https://jasp-stats.org/
Jayabalan, N., Zafir, M., Jenny, M., Nor, A., & Muhammad, A. (2019). E-recruitment technology adoption among generation z job-seekers. International Journal of Engineering and Advanced Technology, 9(2), 1880-1888.
Jonas, D., Maria, E., Widiasari, I. R., Rahardja, U., & Wellem, T. (2024). Design of a TAM Framework with Emotional Variables in the Acceptance of Health-based IoT in Indonesia. ADI Journal on Recent Innovation, 5(2), 146-154.
Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students' satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictors in a structural model. Computers & Education, 57(2), 1654-1664.
Kim, E. Y., & Jackson, V. P. (2009). The effect of E-SERVQUAL on e-loyalty for apparel online shopping. Journal of Global Academy of Marketing, 19(4), 57-65.
Kim, Y., & Lee, H. S. (2014). Quality, perceived usefulness, user satisfaction, and intention to use: An empirical study of ubiquitous personal robot service. Asian Social Science, 10(11), 1.
Kiseleva, J., Williams, K., Hassan Awadallah, A., Crook, A. C., Zitouni, I., & Anastasakos, T. (2016, July). Predicting user satisfaction with intelligent assistants. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 45-54).
Kotler, P., Keller, K. L., & Ang, S. H. (2018). Marketing management: an Asian perspective. Pearson.
Kowalczuk, P. (2018). Consumer acceptance of smart speakers: a mixed methods approach. Journal of Research in Interactive Marketing, 12(4), 418-431.
Lallmahamood, M. (2007). An Examination of Individual's Perceived Security and Privacy of the Internet in Malaysia and the Influence of this on their Intention to Use E-commerce: Using an Extension of the Technology Acceptance Model. Journal of Internet Banking and Commerce, 12(3), 1.
Lau, J., Zimmerman, B., & Schaub, F. (2018). Alexa, are you listening? Privacy perceptions, concerns and privacy-seeking behaviors with smart speakers. Proceedings of the ACM on human-computer interaction, 2(CSCW), 1-31.
Lee, K. Y., Sheehan, L., Lee, K., & Chang, Y. (2021). The continuation and recommendation intention of artificial intelligence-based voice assistant systems (AIVAS): the influence of personal traits. Internet Research, 31(5), 1899-1939.
Liaw, S.-S. (2008). Investigating students’ perceived satisfaction, behavioral intention, and effectiveness of e-learning: A case study of the Blackboard system. Computers & Education, 51(2), 864-873.
Marriott, H. R., & Pitardi, V. (2021, June). Opportunities and challenges facing Ai voice-based assistants: Consumer perceptions and technology realities: An abstract. In Academy of Marketing Science Annual Conference-World Marketing Congress (pp. 81-82). Cham: Springer International Publishing.
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37.
McTear, M. F., Callejas, Z., & Griol, D. (2016). The Conversational Interface (Vol. 6). Springer.
Meyer-Waarden, L., Pavone, G., Poocharoentou, T., Prayatsup, P., Ratinaud, M., Tison, A., & Torné, S. (2020). How service quality influences customer acceptance and usage of chatbots? SMR-Journal of Service Management Research, 4(1), 35-51.
Mohammadi, H. (2015). Social and individual antecedents of m-learning adoption in Iran. Computers in Human Behavior, 49, 191-207.
Nunnally, J. C. and Bernstein, I. H., Psychometric Theory, New York: McGraw Hill, 1994.
O'Brien, L., Merson, P., & Bass, L. (2007). Quality attributes for service-oriented architectures. International Workshop on Systems Development in SOA Environments (SDSOA'07: ICSE Workshops 2007),
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469.
Othman, N. A., Alamsyah, D. P., Ratnapuri, C., & Kurnianingrum, D. (2022). ‘The perceived ease of use in mobile payment support by responsiveness smartness and mobility. J. Theor. Appl. Inf. Technol, 100(11), 3696-3706.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perc. Journal of Retailing, 64(1), 12.
Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). ES-QUAL: A multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213-233.
Piñeiro-Martín, A., García-Mateo, C., Docío-Fernández, L., & Lopez-Perez, M. D. C. (2023). Ethical challenges in the development of virtual assistants powered by large language models. Electronics, 12(14), 3170.
Priporas, C.-V., Stylos, N., & Fotiadis, A. K. (2017). Generation Z consumers' expectations of interactions in smart retailing: A future agenda. Computers in Human Behavior, 77, 374-381.
PwC. (n.d.). Consumer intelligence series: Voice assistants. PwC. https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/voice-assistants.html
Ramos, D. (2018). Voice Assistants: How Artificial Intelligence Assistants Are Changing Our Lives Every Day. Smart sheet. https://www.smartsheet.com/voice-assistants-artificial-intelligence
Raza, S. A., Umer, A., Qureshi, M. A., & Dahri, A. S. (2020). Internet banking service quality, e-customer satisfaction and loyalty: the modified e-SERVQUAL model. The TQM Journal, 32(6), 1443-1466.
Research and Markets. (2024, February). Voice Assistant Application Global Market Report 2024. Research and Markets. https://www.researchandmarkets.com/reports/5767320/voice-assistant-application-global-market-report
Seemiller, C., & Grace, M. (2016). Generation Z goes to college. John Wiley & Sons.
Siu, N. Y.-M., & Mou, J. C.-W. (2005). Measuring service quality in internet banking: the case of Hong Kong. Journal of International Consumer Marketing, 17(4), 99-116.
Smith, H. J., Dinev, T., & Xu, H. (2011). Information privacy research: an interdisciplinary review. MIS Quarterly, 989-1015.
Suryaa, D. (2024). 80+ Industry Specific Voice Search Statistics For 2024. synup. https://www.synup.com/en/voice-search-statistics
Szymanski, D. M., & Hise, R. T. (2000). E-satisfaction: an initial examination. Journal of Retailing, 76(3), 309-322.
Tan, H., Sun, L., & Šabanović, S. (2016). Feeling green: Empathy affects perceptions of usefulness and intention to use a robotic recycling bin. 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN),
Taylor, A. (2021). Human-Robot Teaming in Safety-Critical Environments: Perception of and Interaction with Groups. University of California, San Diego.
Ting, O. S., Ariff, M. S. M., Zakuan, N., Sulaiman, Z., & Saman, M. Z. M. (2016, May). E-service quality, e-satisfaction and e-loyalty of online shoppers in business to consumer market; Evidence form Malaysia. In IOP Conference Series: Materials Science and Engineering (Vol. 131, No. 1, p. 012012). IOP Publishing.
Untari, F. A. (2019). Service quality, patient satisfaction, and types of medical insurance towards the revisit intention to private hospitals among outpatients in South Tangerang City, Indonesia.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
VSoft Consulting. (n.d.). How voice assistants are transforming the way business gets done. VSoft Consulting. https://blog.vsoftconsulting.com/blog/how-voice-assistants-are-transforming-the-way-business-gets-done
Wang, Z., Yuan, R., Luo, J., Liu, M. J., & Yannopoulou, N. (2023). Does personalized advertising have their best interests at heart? A quantitative study of narcissists’ SNS use among Generation Z consumers. Journal of Business Research, 165, 114070.
Wert, K. (2023). The Rise of Voice Assistants and Their Impact on Our Daily Lives. Medium. https://medium.com/@kamalywert/the-rise-of-voice-assistants-and-their-impact-on-our-daily-lives-e903521edb9b
Westbrook, R. A., & Oliver, R. L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of Consumer Research, 18(1), 84-91.
Wienrich, C., Carolus, A., Markus, A., Augustin, Y., Pfister, J., & Hotho, A. (2023). Long-term effects of perceived friendship with intelligent voice assistants on usage behavior, user experience, and social perceptions. Computers, 12(4), 77.
Wilson, N., Alvita, M., & Wibisono, J. (2021). The effect of perceived ease of use and perceived security toward satisfaction and repurchase intention. Jurnal Muara Ilmu Ekonomi dan Bisnis, 5(1), 145-159.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.
Yusuf, R., Hendrayati, H., Dewi, R., & Nurdin, J. (2021). E-servqual: How E-servqual Can Influence E-Satisfaction in Shopee. 5th Global Conference on Business, Management and Entrepreneurship (GCBME 2020),
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46.
Zeithaml, V. A., & Parasuraman, A. (2004). Service quality. Cambridge, MA.
Zeng, E., Mare, S., & Roesner, F. (2017). End user security and privacy concerns with smart homes. In thirteenth symposium on usable privacy and security (SOUPS 2017) (pp. 65-80).
Zhao, Y., Wang, L., Tang, H., & Zhang, Y. (2020). Electronic word-of-mouth and consumer purchase intentions in social e-commerce. Electronic Commerce Research and Applications, 41, 100980.
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540.
Zilko, C. (2021). Best Voice Assistants for Your Home and Office. IndieWire. https://www.indiewire.com/shop/best-voice-assistant-home-1234633778/
王欣瑜, & 許芷菱. (2018). 虛擬語音助理市場研究-以Siri與Google Assistant為例.
古承運(2018)。「我能幫您什麼?」: 語音助理使用意圖之研究。全國碩博士論文資訊網。https://hdl.handle.net/11296/rw263x
何淑貞, 范振銘, 廖春枝, & 林楚海. (2012). 整合 fuzzy-SERVQUAL 與 Kano-QFD 模型探討網路購物的服務品質. 創新與經營管理學刊, 3(1), 75-96.
余天佐, & 韩映雄. (2014). 研究生教育服务质量管理的实证研究: 基于 SERVQUAL 模型. 研究生教育研究(1), 11-16.
李天惠. (2019). 語音助理現況與普及性–以 Google Assistant 為例.
林新宇. (2016). SERVQUAL 模型在铁路客运服务质量评价中的应用. 交通科技与经济, 18(4), 17-19.
林義屏, 董玉娟, & 李勇輝. (2007). 顧客關係管理在網路銀行服務的應用: 網站服務品質對顧客忠誠度的影響. 交大管理學報, 1, 57-85.
邱紹群, & 廖宏騰. (2021). 智慧手機語音助理人機社交關係之研究. 管理資訊計算, 10(2), 227-243.
段芸, 张晓雯, & 潘华峰. (2021). 基于 SERVQUAL-IPA 模型的互联网医院服务质量评价. 健康发展与政策研究, 24(5), 551-554.
施素明(2005)。B2C網站服務品質量測──e-SERVQUAL觀點。﹝碩士論文。國立臺北大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/edtqxk
夏淮柔(2022)。感知價值及隱私顧慮對智慧型語音助理的持續使用意圖之影響研究。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/ftcvq8
許素梅(2011)。以科技接受模式探討電子書使用與需求之研究。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/cj98d6。
張火燦, & 余月美. (2008). 服務品質, 顧客滿意度與顧客忠誠度關係之研究. 明新學報, 34(1), 127-140.
張紹勳(2001),研究方法,修訂版,台中:滄海書局
張榮森(2015)。行動購物APP服務品質、顧客滿意度與顧客忠誠度關係之研究。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/e2djyg
黃莉雯(2019)。以科技接受模式探討行動支付滿意度與接受度之研究。﹝碩士論文。高苑科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4c44y3
楊惠合. (2004). 以科技接受模型探討數位學習滿意度之研究. 未出版碩士論文,《 大葉大學資訊管理學研究所》, 彰化縣.
劉芷安. (2024). 隱私疑慮及知覺利益對使用者隱私管理之影響. 臺中科技大學企業管理系碩士班學位論文, 1-70.
蕭丞志(2023)。應用 SERVQUAL 模型探討行動銀行服務品質。﹝碩士論文。國立高雄科技大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/6ku5j5