簡易檢索 / 詳目顯示

研究生: 張繼仁
Chang, Chi-Jen
論文名稱: 以儲能設備建構可控式風力發電系統
Controllable Wind Generation System Realized by Energy Storage Equipment
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 172
中文關鍵詞: 風力發電系統儲能氫能超級電容模型建構
外文關鍵詞: wind generation system, storage, hydrogen, super-capacitor
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風力發電是近年來成長最迅速的再生能源,但風能具間歇性質,容易使輸出功率產生變動,擾亂電網的運作,增加電力調度的困難度。欲穩定風能輸出,需輔以定功率控制、旋角控制或儲能設備方可為之,但前兩者只適用於降載,儲能設備則可兼具升降載功能,其效能更全面,若風機欲發展為完全可接受調度之發電機,則配備儲能設備為必須。
    在現今的儲能設備中,氫能具有能量密度高、用途廣泛、無汙染、壽命長等優點;超級電容則具備轉換效率高與響應速度快等特色。因此,本研究選用氫能與超級電容作為儲能設備,建構永磁同步風力發電機搭配電力電子轉換設備及儲能設備之系統模型,並加入最大功率控制、旋角控制、儲能設備切換與降載機制等控制策略,使之成為可控式風力發電系統。此外,本研究依據標準差法則,構想儲能設備最小化之方法,藉此減少儲能設備設置成本。

    In recent years, wind energy has shown a rapid growth among the renewable alternatives around the world. Due to the intermittent nature of wind, wind power is difficult to dispatch and may cause power fluctuation in power grid. To perform the dispatchable wind energy, constant power control, pitch angle control, or combining with storage equipment are the general approaches. The first two approaches may only be realized by the deloaded condition. Alternatively, the third option can be comprehensively operated to realize power ramp up and ramp down controls. If we want to make the wind turbine as a generator that is completely flexible for power dispatch, the storage system is essential.
    Among today’s energy storage developments, hydrogen based storage system features high energy density, wide application, no pollution and long life time advantages. Super-capacitors also perform fast response characteristics with high efficiency. Therefore, this thesis presents a model of PMSG-based wind energy conversion system combining with the storage equipments using the hydrogen storage system and the super-capacitors. This model is further used to perform the systematic analysis of the maximum power point tracking control, the pitch angle control, and the set-point tracking in order to make the wind turbine as a controllable generating system. Finally, this thesis also discusses the minimum storage installation requirement using the standard deviation analysis. The proposed evaluation may help in decreasing the cost of storage installation.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 XI 符號索引 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2本文貢獻 3 1.3本文架構 3 第二章 永磁式風力發電系統模型建構 5 2.1風力發電系統架構之比較 5 2.2風速產生模型 8 2.3風渦輪模型 12 2.4發電機模型建構 17 2.4.1永磁同步發電機模型 17 2.4.2永磁同步發電機控制器 19 2.5電力電子轉換器控制模型建構 23 2.5.1發電機側轉換器控制模型 24 2.5.2電網側逆流器控制模型 26 第三章 儲能設備模型建構 33 3.1儲能設備簡介 33 3.2氫能儲能設備 35 3.2.1氫能儲能設備架構 35 3.2.2電解器簡介與模型建構 36 3.2.3燃料電池簡介與模型建構 41 3.2.4儲氫槽簡介與模型建構 58 3.2.5氫能儲能設備整體模型架構 59 3.3超級電容儲能設備 61 3.3.1超級電容簡介 61 3.3.2超級電容動作原理 63 3.3.3超級電容模型建構 64 3.4儲能設備與直流側架構 73 第四章 控制策略 78 4.1風力發電控制 78 4.1.1最大功率追蹤 78 4.1.2旋角控制 82 4.1.3最大功率追蹤與旋角控制模擬 84 4.2儲能設備切換與風機降載機制 90 4.2.1儲能切換機制 91 4.2.2風機降載機制 95 4.3儲能設備最小化 101 第五章 實驗結果比較 110 5.1實驗整體架構說明 110 5.2儲能設備切換與風機降載機制模擬結果 111 5.2.1風能發電系統結合氫能儲能設備 112 5.2.2風能發電系統結合超級電容儲能設備 128 5.2.3 綜合比較 144 5.3儲能設備最小化模擬結果 145 第六章 結論與未來研究方向 162 6.1 結論 162 6.2未來研究方向 163 參考文獻 164 作者簡介 172

    [1] Global Wind Energy Council, “Global Wind 2009 Report,” 2010. [Online]. Available : http://www.gwec.net/
    [2] 桂人傑,變速風機之控制系統,精密製造與新興能源機械技術專輯,機械工業雜誌,民國九十五年五月。
    [3] C. Luo, H. G. Far, H. Banakar, P. K. Keung, B. T. Ooi, “Estimation of Wind Penetration as Limited by Frequency Deviation,” IEEE Transaction on Energy Conversion, Vol. 22, Issue 3, pp. 783-791, September 2007.
    [4] C. Luo, H. Banakar, S. Baike, B. T. Ooi, “Strategies to Smooth Wind Power Fluctuations of Wind Turbine Generator,” IEEE Transaction on Energy Conversion, Vol. 22, Issue 2, pp. 341-349, June 2007.
    [5] 吳元康,大型風場之儲能設備,投影片,民國九十六年十一月,出處:http://content.sp.npu.edu.tw/teacher/yk.wu/default.aspx
    [6] L. Barote, R. Weissbach, R. Teodorescu, C. Marinescu, M. Cirstea, “Stand-Alone Wind System with Vanadium Redox Battery Energy Storage,” 11th International Conference on Optimization of Electrical and Electronic Equipment , pp. 407-412,May 2008.
    [7] K. Yoshimoto, T. Nanahara, G. Koshimizu, “New Control Method for Regulating State-of-Charge of a Battery in Hybrid Wind Power/Battery Energy Storage System,” Power Systems Conference and Exposition, pp. 1244-1251, October/November 2006.
    [8] T. Senjyu, Y. Kikunaga, A. Yona, H. Sekine, A.Y. Saber, T. Funabashi, “Coordinate control of wind turbine and battery in wind power generator system,” Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-7, July 2008.
    [9] S. Teleke, M. E. Baran, A. Q. Huang, S. Bhattacharya, L. Anderson, “Control Strategies for Battery Energy Storage for Wind Farm Dispatching,” IEEE Transactions on Energy Conversion, Vol. 24, Issue 3, pp. 725-732, September 2009.
    [10] P.D. Nguyen Ngoc, T. Pham, S. Bacha, D. Roye, “Optimal operation for a wind-hydro power plant to participate to ancillary services,” IEEE International Conference on Industrial Technology, pp. 1-5, February 2009.
    [11] C. Cristofari, G. Notton, P. Poggi, M. Muselli, N. Heraud, S. Nedelcheva, “Coupling hydro and wind electricity production by water - pumping storage,” First international Symposium on Environment Identities and Mediterranean Area, pp. 9-12, July 2006.
    [12] H. Daneshi, A. Daneshi, N.M. Tabari, A.N. Jahromi, “Security-constrained unit commitment in a system with wind generation and compressed air energy storage,” International Conference on the European Energy Market, pp. 1-6, May 2009.
    [13] H. Ibrahim, A. Ilinca, R. Younes, J. Perron, T. Basbous, “Study of a Hybrid Wind-Diesel System with Compressed Air Energy Storage,” Electrical Power Conference , pp. 320-325, October 2007.
    [14] K. Idjdarene, D. Rekioua, T. Rekioua, A. Tounzi, “Direct Torque Control Strategy for a Variable Speed Wind Energy Conversion System Associated to a Flywheel Energy Storage System,” International Conference on Developments in eSystems Engineering, pp. 17-22, December 2009.
    [15] R. Takahashi, J. Tamura, “Frequency control of isolated power system with wind farm by using Flywheel Energy Storage System,” International Conference on Electrical Machines, pp. 1-6, September 2008.
    [16] I.J. Iglesias, L. Garcia-Tabares, A. Agudo, I. Cruz, L. Arribas, “Design and simulation of a stand-alone wind-diesel generator with a flywheel energy storage system to supply the required active and reactive power,” Power Electronics Specialists Conference, Vol.3, pp. 1381-1386, June 2000.
    [17] Shuang Yu, T.J. Mays, R.W. Dunn, “A new methodology for designing hydrogen energy storage in wind power systems to balance generation and demand,” International Conference on Sustainable Power Generation and Supply, pp. 1-6, April 2009.
    [18] T. Senjyu, T. Nakaji, K. Uezato, T. Funabashi, “A hybrid power system using alternative energy facilities in isolated island,” IEEE Transactions on Energy Conversion, Vol. 20, Issus 2, pp.406-414, June 2005.
    [19] T. Zhou, B. Francois, “Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system,” International Journal of Hydrogen Energy, Vol. 34, Issus 1, pp. 21-30, January 2009.
    [20] L.J. Fingersh, “Optimized Hydrogen andElectricity Generation from Wind,” National Renewable Energy Laboratory, June 2003.
    [21] S.M. Muyeen, R. Takahashi, T. Murata, J. Tamura, “Integration of an Energy Capacitor System With a Variable-Speed Wind Generator,” IEEE Transactions on Energy Conversion, Vol. 24, Issus 3, pp. 740-749, September 2009.
    [22] H. Kaneuchi, T. Yachi, T. Tani, “Effect of an EDLC in a wind turbine system for hydrogen production,” International Telecommunications Energy Conference, pp. 557-562, September/October 2007.
    [23] T. Kinjo, T. Senjyu, N. Urasaki, H. Fujita, “Output levelling of wind power generation system by EDLC energy storage,” Industrial Electronics Society, Vol. 3, pp. 3088-3093, November 2004.
    [24] K. Ushiwata, S. Shishido, R. Takahashi, T. Murata, J. Tamura, “Smoothing control of wind generator output fluctuation by using electric double layer capacitor,” International Conference on Electrical Machines and Systems, pp. 308-313, October 2007.
    [25] R. Thresher, M. Robinson, P. Veers, “To Capture the Wind,” IEEE Power & Energy Magazine, pp. 34-46, November 2007.
    [26] 廖偉志,風能轉換系統應用於市電併聯之實功控制,國立成功大學碩士論文,民國九十七年六月。
    [27] M. R. Dubois, "Review of Electromechanical Conversion in Wind Turbines," Final Literature review, April 2000.
    [28] 林俊宏,太陽能-風力混合發電系統之可用度及成本/效益評估,清雲科技大學碩士論文,民國九十四年六月。
    [29] 徐彬堯,風車葉片運動模擬與動態分析,國立成功大學碩士論文,民國九十四年一月。
    [30] Wei Li, C. Abbey, G. Joos, “Control and Performance of Wind Turbine Generators based on Permanent Magnet Synchronous Machines Feeding a Diode Rectifier,” Power Electronics Specialists Conference, pp. 1-6, June 2006.
    [31] N. P. W. Strachan, D. Jovcic, “Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent -Magnet Wind Energy Conversion and Storage System (WECSS),” Europe of OCEANS, pp. 1-6, 2007.
    [32] C. M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK, Prentice-Hall, 1998.
    [33] K. Tan, S. Islam, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensor,” IEEE Transaction on Energy Conversion, Vol. 19, pp. 392-399, June 2004.
    [34] M. Yin, G. Li, M. Zhou, C. Zhao, “Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration,” Power Engineering Society General Meeting, pp. 1-6, June 2007.
    [35] A. Yazdani, R. Iravani, “A neutral-point clamped converter system for direct-drive variable-speed wind power unit,” IEEE Transactions on Energy Conversion, Vol. 21, Issue 2, pp. 596-607, June 2006.
    [36] A. Nabae, I. Takahashi, H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, Vol. IA-17, Issue 5, pp. 518-523, September 1981.
    [37] Øystein Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” International Journal of Hydrogen Energy, Vol. 28, Issue 1, pp. 21-33, January 2003.
    [38] 董成祥,電解水產氫之電解液流場效應分析,國立中央大學碩士論文,民國九十七年七月。
    [39] 黃柏升,電解水產氫效率之參數分析,國立中央大學碩士論文,民國九十七年一月。
    [40] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2005年3月。
    [41] 旗威科技有限公司、勝光科技股份有限公司,DMFC直接甲醇燃料電池原理、應用與實作,旗威出版固份有限公司,2006年11月。
    [42] K. Stanton, J. S. Lai, “A Thermally Dependent Fuel Cell Model for Power Electronics Design,” Power Electronics Specialists Conference, pp. 1647-1651, June 2005.
    [43] 蔡清池、林永春、蔡武田,質子交換膜燃料電池組電感性負載之暫態電路分析,中華民國第二十五屆電力工程研討會,第1552 - 1557頁,2004年,台南。
    [44] 蔡清池、林永春、蔡武田,質子交換膜燃料電池組之PID 電壓控制,第四屆電力電子研討會,第265 - 270頁,2005年,新竹。
    [45] 李彥旻,質子交換膜燃料電池應用於自主式水下載具之直流電力轉換探討,國立成功大學碩士論文,民國九十六年七月。
    [46] M. J. Khan, M. T. Iqbal, “Dynamic Modelling and Simulation of a Fuel Cell Generator,” Fuel Cells, Vol. 5, Issue 1, pp. 97-104, December 2004.
    [47] J.B. Jia, Y. Wang, Y.T. Cham, F. Lewis, “The Electrical Dynamic Response Study of PEMFC as a Backup Power Supply,” IEEE International Conference on Control and Automation, pp. 1156-1161, May/June 2007.
    [48] R. Ko¨tz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, Vol. 45, Issue 15-16, pp. 2483-2498, May 2000.
    [49] 廖國祥,超級電容的過去、現在與未來,國立中正大學碩士論文,民國九十六年七月。
    [50] L. Zubieta, R. Bonert, “Characterization of double-layer capacitors for power electronics applications,” IEEE Transactions on Industry Applications, Vol. 36, Issue 1, pp. 199-205, January/February 2000.
    [51] Y.Y. Yao, D.L. Zhang, D.G. Xu, “A Study of Supercapacitor Parameters and Characteri stics,” International Conference on Power System Technology, pp. 1-4, October 2006.
    [52] D. Linzen, S. Buller, E. Karden, R.W. De Doncker, “Analysis and evaluation of charge-balancing circuits on performance, reliability, and lifetime of supercapacitor systems,” IEEE Transactions on Industry Applications, Vol.41, Issue 5, pp. 1135-1141, September/October 2005.
    [53] H. Chong, A.Q. Huang, L. Ding, H. Mamath, M. Ingram, S. Atcitty, “Modeling and design of a transmission ultracapacitor (TUCAP) integrating modular voltage source converter with ultracapacitor energy storage,” Applied Power Electronics Conference and Exposition, pp. 1104-1110, March 2006.
    [54] A.P. Leite, C.L.T. Borges, D.M. Falcao, “Probabilistic Wind Farms Generation Model for Reliability Studies Applied to Brazilian Sites,” IEEE Transactions on Power Systems, Vol. 21, Issue 4, pp. 1493-1501, November 2006.
    [55] H. Holttinen, M. Milligan, B. Kirby, T. Acker,V. Neimane, T. Molinski, “Using Standard Deviation as a Measure of Increased Operational Reserve Requirement for Wind Power,” Wind Engineering, Vol. 32, No. 4, pp. 355-378, 2008.
    [56] L.M. Fernandeza, C.A. Garciaa, F. Juradob, “Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator,” Renewable Energy, Vol. 35, Issue 6, pp. 1308-1318, June 2010.
    [57] Federal Energy Regulatory Commission, USA, “Interconnection for Wind Energy”, December 2005. Available:http://www.ferc.gov

    下載圖示 校內:2012-08-30公開
    校外:2012-08-30公開
    QR CODE