| 研究生: |
李孟軒 Lee, Meng-Hsuan |
|---|---|
| 論文名稱: |
GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究 Study of Residual Stress on Inconel 690 Alloy Butt-Welded by GTAW and LBW Processes |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 腐蝕 、殘留應力 、惰性氣體鎢棒電弧銲接 、鎳基690合金 、雷射銲接 |
| 外文關鍵詞: | Corrosion, Residual Stress, Laser Beam Welding, Inconel 690 Alloy, GTAW |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以GTAW與LBW兩種製程對鎳基690合金進行平板對接銲,探討銲件殘留應力狀態與抗腐蝕能力,並由銲接入熱量、銲接熱循環歷程、溫度分布等因素分析造成兩者差異性之關係。實驗使用高速鑽孔法搭配應變規量測銲件殘留應力,並使用U-Bend應力腐蝕試驗評估兩種銲接製程銲件之抗腐蝕能力。
溫度量測實驗結果顯示,相較於GTAW製程,LBW有極高的加熱速率(3020˚C/sec)與冷卻速率(147~157˚C/sec),其銲件熱影響區於冷卻通過敏化溫度區間經歷時間僅1.4~1.5秒,此有助於抑制晶界碳化鉻析出使銲件保持良好抗蝕能力。GTAW銲件銲接衰化區通過敏化溫度區間經歷時間超過17秒,沿晶界有碳化鉻連續狀態析出,導致銲件抗沿晶腐蝕能力下降。GTAW與LBW銲件在接近熔融線處皆有高拉伸殘留應力,LBW最大拉伸殘留應力高於GTAW銲件,其應力值接近材料降伏強度,推測為LBW較大的溫度梯度變化導致較高殘留應力。殘留應力隨著與熔融線距離增加而下降,LBW接續殘留拉應力區後有較明顯之殘留壓應力區。配合組織金相與殘留應力比較銲件腐蝕分佈狀態,結果顯示銲件組織變化還是影響銲件抗腐蝕能力的主因,殘留應力對腐蝕行為的影響不明顯。
關鍵字:鎳基690合金、惰性氣體鎢棒電弧銲接、雷射銲接、殘留應力、腐蝕
This study investigated the residual stress and corrosion resistance of Inconel 690 Alloy weldments by GTAW and Nd-YAG Laser Beam Welding processes. The residual stress of the weldments was measured by the high speed hold-drilling strain-gage method, and their corrosion resistance was evaluated by the U-Bend stress corrosion test.
The temperature measurements showed that LBW process resulted in much higher heating rate (3020˚C/sec) and cooling rate (147~157˚C/sec)of the weldment than GTAW process. Compared to the temperature observations in the heat affected zone of both weldments, it only took 1.4~1.5 seconds to pass through the sensitization range in the LBW weldment, whereas 17 seconds period was needed in the GTAW counterpart. The high cooling rate is favourable for depressing Cr-carbides precipitation along the grain boundary, and hence to improve the corrosion resistance of weldments. Moreover, high tensile residual stresses were observed near the fusion line of all specimens. The maximum residual stress of LBW weldment is higher than that of GTAW counterpart, which value approaches to the yielding strength of 690 alloy. This may be attribute to the high temperature gradient of the LBW process. The residual stresses decrease with increasing distance from the fusion line, and LBW specimen has a compressive residual stress zone clearly following the tensile residual stress zone. From the comparison with metallography, residual stress of weldments and the results of corrosion tests, it was found that the welding microstructure is a major factor to affect the corrosion resistance of weldments, whereas the welding residual stress didn’t show an obvious effect to it.
Keywords: Inconel 690 Alloy, GTAW, Laser Beam Welding, Residual Stress, Corrosion
1. U. S. Department of Energy, Annual Energy Review 2005. 2006.
2. U. S. Department of Energy, Annual Energy Outlook 2007. 2007.
3. 財團法人國家政策研究基金會, 核能發電之必要性(譯自The Need of Nuclear Power). 2000, 國政研究報告.
4. T. Ishihiara, "Corrosion Failure and Its Prevention in Light Water Reactor", Welding International, 1989(3), pp. 209-216.
5. U. S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure. 1993, NRC Information Notice 93-101.
6. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, 1997, Vol.22, pp. 49-69.
7. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, 1999, Vol.26, pp. 8-12.
8. 游章雄, "核電廠管路系統之可靠度分析及預防維護策略研究". 國立台灣大學機械工程研究所博士論文. 2002.
9. J.R. Crum & R.C. Scarberry, "Corrosion Testing of Inconel Alloy 690 for PWR Steam Generators", Journal Material for Energy Systems, 1982, Vol.4(3), pp. 125-130.
10. R.N. Parkins, "Mechanisms of SCC", in Corrosion, L.L. Shreir, Editor. 1976, Newnes-Butterworths.
11. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, & S.C. Yao, "The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690", Metall. Trans. A, 1989, Vol.20A, pp. 2057-2067.
12. R.Y. Xue, "Corrosion Test of Plugging Procedure for Steam Generator of Qinshan Nuclear Power Plant", Nuclear Power Engineering, 1993, Vol.14, pp. 304-343.
13. K. Stiller, J. Nilsson, & K. Norring, "Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690", Metall. Trans. A, 1996, Vol.27A, pp. 327-341.
14. R.A. Page & A. McMinn, "Relative Stress Corrosion Susceptibilities of Alloys 690 and 600 in Simulated Boiling Water Environment", Metall. Trans. A, 1986, pp. 877-887.
15. Inconel Alloy 690. 2002, Special Metals Corporation.
16. W.L. Mankins & A. McMinn, "Nickel and Nickel Alloys", in Metals Handbook. 1992, ASM International. pp. 428-445.
17. C.M. Brown & W.J. Mills, "Effect of Water on Mechanical Properties and Stress Corrosion Behavior of Alloy 600, Alloy 690, EN82H, and EN52 Welds", Corrosion, 1999, Vol.55(2), pp. 173-186.
18. 蔡文達, 鎳基690合金之應力腐蝕及腐蝕疲勞性質研究. 1996, 行政院國家科學委員會專題研究計畫報告.
19. J.C. Thornley, "Effect of Heat Input on Properties of Inconel Filler Metal 82 Weld Deposits", Welding Journal, 1973, Vol.8(355s-358s).
20. W.J. Mills & C.M. Brown, "Fracture Toughness of Alloy 600 and an EN82H Weld in Air and Water", Metallurgical and Materials Transactions A, 2001, Vol.32A(5), pp. 1161-1174.
21. R.A. Page, "Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water", Corrosion, 1983, Vol.39(10), pp. 409-421.
22. 蘇子可等, Inconel 690合金銲接特性之研究. 1992, 行政院原委會81年度研究報告.
23. M.B.C. Quigley, "High Power Density Welding", in The Physics of Welding, J.F. Lancaster, Editor. 1986, Pergamon Press.
24. 曾光宏, "不銹鋼銲件變形與殘留應力之研究". 國立交通大學機械工程研究所博士論文. 2001.
25. W.M. Steen, "Laser Material Processing". 1991, Springer-Verlag.
26. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara, & H. Watanabe, "Repair of Stress Corrosion Cracking in Overlaying of Inconel 182 by Laser Surface Melting", Welding in the World, 2005, Vol.49, pp. 37-44.
27. J.S. Kim, J.H. Suh, J.K. Shin, S.J.L. Kang, Y.S. Lim, & I.H. Kuk, "Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600", Materials Science and Engineering A, 1998, Vol.254, pp. 67-75.
28. Y.S. Lim, H.P. Kim, J.H. Han, J.S. Kim, & H.S. Kwon, "Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600", Corrosion Science, 2001, Vol.43, pp. 1321-1335.
29. Y.S. Lim, J.H. Suh, I.H. Kuk, & J.S. Kim, "Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting", Metallurgical and Materials Transactions A, 1997, Vol.28, pp. 1997-1223.
30. A. Yokoyama, T. Nagashima, O. Matsumto, Y. Nagura, & T. Ishide. "YAG Laser Welding Sleeving Technology for Steam Generator Tubes in Nuclear Power Plants", in The 5th International Symposium of the Japan Welding Society. 1990.
31. T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto, & T. Ishide, "Development of YAG Laser Welding Robot System for Repairing Heat Exchange Tubes", Welding in the World, 1994, Vol.34, pp. 133-138.
32. 郭聰源, 李驊登, 葉東昌, 杜青駿, 鄭勝隆, "鎳基690 合金銲件之顯微組織與機械性質研究", 金屬熱處理, 1998, Vol.57, pp. 15-22.
33. 葉東昌, 李驊登, 鄭勝隆, 郭聰源. "時效熱處理對鎳基690 合金銲件之微觀組織影響之研究", 中國機械工程學會第十六屆學術研討會. 1999.
34. 李驊登, 郭聰源, 鄭勝隆. "銲材合金Nb 的添加對鎳基690 與304L 不銹鋼銲件之機械性質與耐蝕性之影響", 中國機械工程學會第十五屆學術研討會. 1998.
35. 李驊登, 郭聰源, 鄭勝隆. "鎳基690 與304L 不銹鋼的異種銲接特性與顯微組織研究", 中華民國銲接協會年會論文. 1998.
36. 楊仲霖, "電子束銲接製程參數對690合金與304L不銹鋼異種銲接之影響". 國立成功大學機械工程研究所碩士論文. 2002.
37. 范文傑, "Nd-YAG雷射銲接製程參數對鎳基690與304L不銹鋼異種銲接之影響". 國立成功大學機械研究所碩士論文. 2005.
38. 王振欽, "銲接學", 2nd ed. 2003, 高立圖書.
39. http://www.fortunecity.com/village/lind/247/weld_book/fig10-32.gif.
40. K. Masubuchi, "Analysis of Welded Structures". 1980, Pergamon Press.
41. 蔡曜隆, "銲道溫度與應力分析實驗". 國立交通大學機械工程研究所碩士論文. 2001.
42. W.M. Wilson & C.C. Hao, "Residual Stresses in Welded Structures", The Welding Journal, 1947, Vol.26(5), pp. 295-320.
43. J. Mathar, "Determination of Initial Stress by Measuring the Deformation Around Drilled Holes", Trans. ASME, 1934, Vol.4, pp. 249-254.
44. "Residual Stresses and Distortion", in Welding Handbook. 1993, American Welding Society. pp. 218-233.
45. 黃正峰, "殘留應力之量測", 機械月刊, 1982, Vol.8(8), pp. 49-59.
46. S.P. Timoshenko & J.N. Goodier, "Theory of Elasticity". 1986, McGraw-Hill Ind.
47. M. Kabiri, "Measurement of Residual Stress by the Hole-Drilling Method: Influence of Transverse Sensitivity of the Gages and Relieved Strain Coefficients", Experimental Mechanics, 1984, pp. 249-254.
48. N.J. Rendler & I. Vigness, "Hole-Drilling Strain-Gag Method of Measuring Residual Stress", Experimental Mechanics, 1966, pp. 577-586.
49. G.S. Schajer, "Application of Finite Element Calculations to Residual Stress Measurement", Journal of Engineering Materials and Technology, 1981, Vol.103, pp. 157-163.
50. ASTM E837-01, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method.
51. 郭聰源, "鎳基690合金銲接特性研究". 國立成功大學機械研究所博士論文. 1999.
52. ASTM G30-97, Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens.
53. 美國Vishay公司, http://www.vishay.com/.
54. "Welding Handbook", 7th ed, ed. C. Weisman. Vol. 1. 1976, American Welding Society.
55. D. Radaj, "Heat effects of welding". 1992, Springer-Verlag.
56. Inconel Alloy 600. 2002, Special Metals Corporation.
57. Society for Experimental Mechanics, "Handbook of Measurement of Residual Stresses", ed. J. Lu. 1996, Fairmont Press.
58. 林義成, 周長彬, "平行加熱銲接法改善304不銹鋼銲件殘留應力之研究", 銲接與切割, 1992, Vol.2(1), pp. 3-10.
59. 李驊登, GTAW、EBW及LBW三種不同銲接製程下之鎳基690合金銲件殘留應力與應力腐蝕破壞性質影響研究. 2008, 行政院國家科學委員會專題研究計畫報告, NSC95-2212-E006-116.
60. 吳佳霖, 李驊登, 李孟軒, 楊民安, 牛文俊, 鎳基690合金GTAW與LBW對接銲件之Modified Huey Test腐蝕試驗. 2007, 國立成功大學機械工程研究所MAFD實驗室.
61. M.G. Fontana, "Corrosion Engineering", 3rd ed. 1986, New York, McGraw Hill.
62. S. Kuo, "Welding Metallurgy". 1987, Wiley.
63. K.E. Easterling, "Introduction to the Physical Metallurgy of Welding". 1992, Butterworth Heinemann.
64. 鄭勝隆, "鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究". 國立成功大學機械研究所博士論文. 2003.
65. R.C. Hibbeler, "Mechanics of Materials", 4th ed. 2000, Prentice Hall.