簡易檢索 / 詳目顯示

研究生: 劉文筠
Liu, Wen-Yun
論文名稱: 考慮氣象因子對離岸風場發電效能與運維策略之整合分析
Meteorological Impacts on Offshore Wind Farm Performance and Maintenance Strategies
指導教授: 黃韻勳
Huang, Yun-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 88
中文關鍵詞: 離岸風電氣象因子發電量發電效率可利用率情境分析
外文關鍵詞: Offshore wind power, Meteorological factors, Power generation, Power generation efficiency, Availability, Scenario analysis
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對全球電力需求持續攀升與邁向淨零排放的趨勢,風力發電作為潔淨能源核心技術備受重視;其中,離岸風電具備高度潛力與長期發展優勢。然而,風場實際營運過程中常面臨風速不穩定、氣象條件變異與風機可利用率低等挑戰,導致發電表現與營運效率難以準確掌握。尤其空氣密度變化對風機輸出功率具有直接影響,但在實務評估中常被簡化為常數處理,易造成風能潛力與發電效率的評估偏差。因此,如何準確掌握氣象因子對風場運行的實質影響,遂成為提升再生能源利用效率的重要課題。
    本研究以台灣電力公司示範一期離岸風場為應用案例,透過皮爾森相關係數分析篩選出與發電量密切相關之氣象變數,並根據氣溫與氣壓推算逐時空氣密度,進一步進行統計分析以萃取風場基本氣候特徵。隨後採用風場適用之發電效能、可利用率與運維表現等評估指標,系統性評估風場在不同氣象條件下的運行狀態與發電表現。為深入探討氣象因子對風場營運效能之綜合影響,本研究以風速、風向與空氣密度三項變數進行交叉分類,建立八組氣象情境(A~H),並將各評估指標及發電量計算結果區分為發電量模組、發電效率模組及可利用率模組加以探討。
    分析結果顯示,於發電量模組中,夏、秋兩季因空氣密度偏低且風向偏離主軸方向,導致實際發電量相對高估。發電效率模組結果指出,低風速情境下的風場較有效利用風資源進行發電,且影響發電效率的主要氣象因子依序為風速、風向與空氣密度。於可利用率模組中發現,低風速情境下之總停機時數較高,可利用率亦相對偏低,進一步觀察其停機時間分布顯示風速與人為停機時間有進一步改善之空間。

    Wind energy is a key clean energy solution to address the growing demand for electricity amid efforts to achieve net-zero carbon emissions. Offshore wind power offers immense potential for large-scale development; however, real-world deployment imposes major challenges. Even after bringing a wind farm online, variable weather conditions, fluctuating wind speeds, and turbine availability issues make it difficult to accurately estimate power output and overall efficiency.
    One important but often overlooked factor in performance assessment is air density, which directly affects turbine output. Many practical evaluation methods assume that air density is a constant, but this over-simplification can undermine the accuracy of all corresponding estimates.
    This study examined a case study involving the Phase I Demonstration Offshore Wind Farm proposed by the Taiwan Power Company, combining hourly power generation data from 2023 with weather observations from a nearby offshore tower in Changhua. Pearson correlation analysis was used to identify key weather variable most strongly correlated with power output, and statistical methods were used to identify relevant weather patterns. Hourly air density was calculated from recorded temperature and pressure data. System performance was evaluated using three analysis modules pertaining to power output, efficiency, and availability. Wind speed, wind direction, and air density were also grouped together to define eight weather scenarios (A–H).
    Our findings revealed that in the summer and fall, reduced air density and off-axis wind directions often led to overestimates of power output. While turbines were better able to exploit available energy under low wind speed conditions, those periods were associated with more downtime and reduced availability. These findings underscore the need to incorporate variability in air density and wind direction in offshore wind farm performance assessments.

    中文摘要I AbstractII 誌謝VII 目錄VIII 圖目錄X 表目錄XII 第一章 緒論1 第一節 研究背景與動機1 第二節 研究目的4 第三節 研究架構與流程6 第二章 文獻回顧10 第一節 離岸風場運維策略種類10 第二節 氣象因子對風場之影響13 第三節 風場評估之關鍵績效指標15 第四節 本章結語17 第三章 資料預處理與研究方法19 第一節 資料來源與預處理19 第二節 氣象特徵萃取26 第三節 運行狀態及效能分析30 第四節 考慮空氣密度之發電量計算34 第四章 研究結果分析與討論35 第一節 皮爾森相關係數分析35 第二節 敘述統計分析39 第三節 風機運行狀態分析50 第四節 運維策略情境分析53 第五章 結論與建議64 第一節 結論64 第二節 建議66 參考文獻68

    一、中文文獻
    1.方信志(2022),「彰濱場址的風電潛能評估及海氣象預測」,碩士論文,國立成功大學機械工程研究所。
    2.李佳洲(2023),「基於SCADA資料之離岸風場性能驗證與故障事件肇因分析」,碩士論文,南臺科技大學機械工程系碩士班。
    3.張家豪(2020),「基於機器學習和 SCADA 資料的風力發電機異常事件可預測性分析」,碩士論文,國立中興大學資訊科學與工程研究所。
    4.經濟部能源署(2025),能源統計月報。
    5.鄭秀貞(2023),「在不確定環境下以模糊目標規劃模式求解離岸風場之維護決策」,碩士論文,國立屏東科技大學工業管理研究所。
    二、英文文獻
    1.Carriveau, R.(2011). Fundamental and Advanced Topics in Wind Power. BoD – Books on Demand.
    2.Frederiksen, R. D., Bocewicz, G., Radzki, G., Banaszak, Z., & Nielsen, P. (2024). Cost-effectiveness of predictive maintenance for offshore wind farms: a case study. Energies, 17(13), 3147. https://doi.org/10.3390/en17133147
    3.Fox, H., Pillai, A. C., Friedrich, D., Collu, M., Dawood, T., & Johanning, L.(2022). A review of predictive and prescriptive offshore wind farm operation and maintenance. Energies, 15(2), 504. https://doi.org/10.3390/en15020504
    4.GWEC.(2025). Global Wind Report 2025
    5.Gonzalez, E., Nanos, E. M., Seyr, H., Valldecabres, L., Yürüşen, N. Y., Smolka, U., Muskulus, M., & Melero, J. J.(2017). Key performance indicators for wind farm operation and maintenance. Energy Procedia, 137, 559–570. https://doi.org/10.1016/j.egypro.2017.10.385
    6.Grange, S. K.(2014). Technical note: Averaging wind speeds and directions. Unpublished. https://doi.org/10.13140/RG.2.1.3349.2006
    7.IEA.(2025). Electricity 2025
    8.IEA.(2024). Renewables 2024
    9.Jargalsaikhan, N., Ueda, S., Masahiro, F., Matayoshi, H., Mikhaylov, A., Byambaa, S., & Senjyu, T.(2024). Exploring influence of air density deviation on power production of wind energy conversion system:study on correction method. Renewable Energy, 220, 119636. https://doi.org/10.1016/j.renene.2023.119636
    10.Khatab, A. M.(2017). Performance analysis of operating wind farms. Master's Thesis. Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences.
    11.Li, H., Peng, W., Huang, C. G., & Guedes Soares, C.(2022). Failure rate assessment for onshore and floating offshore wind turbines. Journal of Marine Science and Engineering, 10(12), 1965. https://doi.org/10.3390/jmse10121965
    12.Ma, Y., Zhang ,Wenjuan, & and Branke, J.(2023). Multi-objective optimisation of multifaceted maintenance strategies for wind farms. Journal of the Operational Research Society, 74(5), 1362–1377. https://doi.org/10.1080/01605682.2022.2085066
    13.McMorland, J., Collu, M., McMillan, D., Carroll, J., & Coraddu, A. (2023). Opportunistic maintenance for offshore wind: A review and proposal of future framework. Renewable and Sustainable Energy Reviews, 184, 113571. https://doi.org/10.1016/j.rser.2023.113571
    14.Niu, B., Hwangbo, H., Zeng, L., & Ding, Y.(2018). Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms. Renewable Energy, 128, 81–90. https://doi.org/10.1016/j.renene.2018.05.050
    15.Papadopoulos, P., Coit ,David W., & and Aziz Ezzat, A.(2024). STOCHOS:Stochastic opportunistic maintenance scheduling for offshore wind farms. IISE Transactions, 56(1), 1–15. https://doi.org/10.1080/24725854.2022.2152913
    16.Potisomporn, P., & Vogel, C. R.(2022). Spatial and temporal variability characteristics of offshore wind energy in the United Kingdom. Wind Energy, 25(3), 537–552. https://doi.org/10.1002/we.2685
    17.Pfaffel, S., Faulstich, S., & Rohrig, K.(2017). Performance and reliability of wind turbines: A Review. Energies, 10(11), Article 11. https://doi.org/10.3390/en10111904
    18.Popeangă, J., & Lungu, I.(2014). Forecasting final energy consumption using the centered moving average method and time series analysis. Time Series Analysis.
    19.Roga, S., Bardhan, S., Kumar, Y., & Dubey, S. K.(2022). Recent technology and challenges of wind energy generation: A review. Sustainable Energy Technologies and Assessments, 52, 102239. https://doi.org/10.1016/j.seta.2022.102239
    20.Rodgers, J. L., & Nicewander, W. A.(1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. https://doi.org/10.2307/2685263
    21.Si, G., Xia, T., Gebraeel, N., Wang, D., Pan, E., & Xi, L.(2025). Holistic opportunistic maintenance scheduling and routing for offshore wind farms. Renewable and Sustainable Energy Reviews, 207, 114991. https://doi.org/10.1016/j.rser.2024.114991
    22.Salmelin, M., Karjunen, H., & Lassila, J.(2024). Effect of temperature on seasonal wind power and energy potential estimates in Nordic climates. IET Renewable Power Generation, 18(14), 2658–2671. https://doi.org/10.1049/rpg2.13110
    23.Stieren, A., Gadde, S. N., & Stevens, R. J. A. M.(2021). Modeling dynamic wind direction changes in large eddy simulations of wind farms. Renewable Energy, 170, 1342–1352. https://doi.org/10.1016/j.renene.2021.02.018
    24.Sarker, B. R., & Faiz, T. I.(2016). Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renewable Energy, 85, 104–113. https://doi.org/10.1016/j.renene.2015.06.030
    25.Sahin, A.(2004). Progress and recent trends in wind energy. Progress in Energy and Combustion Science, 30(5), 501–543. https://doi.org/10.1016/j.pecs.2004.04.001
    26.Ulazia, A., Sáenz, J., Ibarra-Berastegi, G., González-Rojí, S. J., & Carreno-Madinabeitia, S.(2019). Global estimations of wind energy potential considering seasonal air density changes. Energy, 187, 115938. https://doi.org/10.1016/j.energy.2019.115938
    27.V. Taboada, J., Diaz-Casas, V., & Yu, X. (2021). Reliability and maintenance management analysis on offshore wind turbines (OWTs). Energies, 14(22), 7662.
    28.Wu, C., Luo, K., Wang, Q., & Fan, J.(2022). A refined wind farm parameterization for the weather research and forecasting model. Applied Energy, 306, 118082. https://doi.org/10.1016/j.apenergy.2021.118082
    29.Xu, Z. Q., Xue, T., Chen, X. Y., Feng, J., Zhang, G. W., Wang, C., ... & Ding, Y. H. (2025). Wind power correction model designed by the quantitative assessment for the impacts of forecasted wind speed error. Advances in Climate Change Research, 16(1), 73-81.https://doi.org/10.1016/j.accre.2024.12.006
    30.Yang, C., Jia, J., He, K., Xue, L., Jiang, C., Liu, S., Zhao, B., Wu, M., & Cui, H.(2023). Comprehensive analysis and evaluation of the operation and maintenance of offshore wind power systems: A survey. Energies, 16(14), 5562. https://doi.org/10.3390/en16145562
    31.Zhou, P., & Yin, P. T.(2019). An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics. Renewable and Sustainable Energy Reviews, 109, 1–9. https://doi.org/10.1016/j.rser.2019.03.049
    三、網路資料
    1.經濟部能源署 (2023),離岸風場角點座標 (TWD97)。網址: https://www.moeaea.gov.tw/wHandLawsList_File
    2.日立公司 (n.d.),風力發電系統。網址:https://www.hitachi.com.tw/products/business/industrial/wind- turbine/products/htw5000_126/specification/index.html

    無法下載圖示 校內:2028-10-25公開
    校外:2028-10-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE