| 研究生: |
陳良政 Chen, Liang-Chang |
|---|---|
| 論文名稱: |
適用於含直接傳輸項之未知系統並具有輸入飽和限制功能的新型二次軌跡追蹤器:一種另類的數位重新設計 New Quadratic Tracker under Input Constraint for the Unknown System with a Direct Transmission Term from Input to Output: An Alternative Digital Redesign Approach |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 輸入飽和限制 、數位重新設計 、軌跡追蹤器 、觀測器/卡爾曼濾波器鑑別方法 |
| 外文關鍵詞: | Input constraint, digital redesign, trajectory tracker, observer/Kalman filter identification |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個適用於含直接傳輸項之未知系統並具有輸入飽和限制功能的新型二次數位軌跡追蹤器。它能有效限制控制力而使系統不發生過飽和現象,並盡可能保持良好的軌跡追蹤能力。首先利用離線的觀測器/卡爾曼濾波器鑑別方法計算出資料取樣系統之適當階數(或低階)的線性觀測器。為了克服模組誤差,應用一個具有高增益特性的數位再設計之線性觀測器,最後藉由鑑別出的觀測器來做為設計控制器的參數。為了考量真實系統可能無法承受過大的控制力,修改線性二次效能指標使之具有飽和限制的概念,並將之離散化。透過離散化後的線性二次效能指標,我們可以提出一個適用於含直接傳輸項之未知系統並具有輸入飽和限制功能的新型二次數位軌跡追蹤器。對於這最佳化設計過程,我們又稱為“一種另類的數位重新設計方法”。
This thesis proposes a new quadratic digital tracker under input constraint to efficiently restrict control input for the unknown system with a direct transmission term from input to output, without losing the good tracking performance as possible. First, the observer/Kalman filter identification (OKID) is utilized to identify the unknown linear/nonlinear system with a feed-through term into the equivalent mathematical model containing a feed-through term. The equivalent mathematical model is used as an analytic and designed tool for the controller and observer. The linear analogue quadratic performance index is modified to contain the term of input constraint. By discretizing the linear analogue quadratic performance index with input constraint into an equivalent discrete one directly, we propose a new quadratic suboptimal digital tracker under input constraint for the unknown system with a feed-through term. This design procedure is also called an alternative digital redesign approach. Further, the analog and digital observers are respectively proposed for the system when the system states are immeasurable. Illustrative examples demonstrate the effectiveness of the proposed design.
[1] Chen, G., and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
[2] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
[3] Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuits and System Theory, Monticello, IL: University of Illinois, pp. 449-459, 1965.
[4] Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
[5] Huang, C. M., Tsai, J. S. H., Provence, R. S., and Shieh, L. S., “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays”, Optimal Control Applications & Methods, vol. 24(4), pp. 197-236, July-August, 2003.
[6] Juang, J. N., Applied System Identification, Prentice Hall, New Jersey, 1994.
[7] Lin, P. H., A Modified NARMAX Model-based Self-tuner with Fault Tolerance for Unknown Nonlinear Stochastic Hybrid Systems with an Input-output Direct Feed-through Term and Input Constraint, Master Thesis, National Cheng Kung University, 2013.
[8] Ogata, K., Discrete-time Control Systems, Prentice-Hall, Englewood Cliffs, N.J., 1987.
[9] Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54, pp. 1934-1939, 2009.
[10] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P., and Shieh, L. S., “State-space self-tuning control for stochastic chaotic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
[11] Tsai, J. S. H., Chen, C. H., Lin, M. J., Guo, S. M., and Shieh, L. S., “Novel quadratic tracker and observer for the equivalent model of the sampled-data linear singular system,” Applied Mathematical Sciences, vol. 6 (68),3381-3409, 2012.
[12] Tsai, J. S. H., Huang, C. C., Guo, S. M., Shieh, L. S., “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,” Applied Mathematical Modelling, vol. 35(8), pp. 3893-3904, 2011.
[13] Tsai, J. S. H., Wang, C. T., and Shieh, L. S., “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
[14] Tarbouriech, S. and Turner, M., “Anti-windup design: An overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3(1), pp. 1-19, 2009.
[15] Tiwari, P. Y., Mulder, E. F., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
[16] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
[17] Yu, X., and Xia, Y., “Detecting unstable periodic orbits in Chen’s chaotic attractor”, International Journal of Bifurcation and Chaos, vol. 10, pp. 1987-1991, 2000.
[18] Yen, G. G., and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[19] Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.
校內:2023-12-31公開