簡易檢索 / 詳目顯示

研究生: 翁水珠
Josephine Angella
論文名稱: 氯及過錳酸鉀氧化水源中藍綠菌胜肽 Anabaenopeptin-B 及 Microginin 527之研究
Oxidation of cyanopeptide Anabaenopeptin-B and Microginin 527 in source water with chlorine and permanganate
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 64
中文關鍵詞: 水處理廠藍綠菌胜肽Anabaenopeptin-BMicroginin 527高錳酸鉀
外文關鍵詞: Water Treatment Plant, Anabaenopeptin-B, Microginin 527, Permanganate, Chlorine
相關次數: 點閱:103下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,水環境易於受到藻華發生時大量藍綠菌所產生的代謝物汙染。藍綠菌產 生的代謝物可能會經由人們飲用或水上娛樂對人體健康產生危害,其中微囊藻毒 (Microcystin)為最著名的藍綠菌毒素之一。然而,從研究報告中得知,與藍綠菌 相關的毒素不僅是微囊藻毒,並建議納入其他生物性之代謝物,尤其對於藍綠菌胜 肽的研究也需要多加關注。藍綠菌除了產生微囊藻毒之外,也能產生 anabaenopeptins 和 microginins 此兩類代謝物,研究結果顯示 anabaenopeptin-B(AP- B)比起微囊藻毒對於水蚤有更強的毒性,而 microginins 會對人類細胞造成遺傳性 毒害,顯示對於藍綠菌胜肽需要有進一步的研究。
    本研究首先針對台灣不同水庫及淨水廠中六種藍綠菌胜肽分布進行調查研究, 其中蚌蛤毒素及兩種藍綠菌胜肽 AP-B 和 Microginin 527(MG572)在六座水庫的原水 中出現頻度為 100%,並且在每座水庫中均可同時檢驗出四種以上的藍綠菌胜肽。除 此之外,在傳統淨水程序中的沉澱和過濾單元並無法有效的將藍綠菌胜肽完全去除, 而生物處理單元或逆滲透處理程序可以提升藍綠菌生態去除效率。
    本研究亦對此兩種高機率出現的藍綠菌胜肽 (AP-B 和 MG527)進一步研究,以瞭 解兩種 cyanopeptides 對於高錳酸鹽和氯的氧化反應速率。實驗結果顯示,AP-B 與高 錳酸鉀作用,反應速率常數為 31.08–97.5 M-1s-1,MG527 的反應速率常數則為 167.59–284.93 M-1s-1。以氯氧化時,AP-B 的反應速率常數為 76.42 – 276.05 M-1s-1, MG527 則為 182.79 – 370.43 M-1s-1。 與 AP-B 環狀肽結構相比,MG527 的線性結構可能為反應速率常數較大的原因。 而高錳酸鉀在天然水系統中鐵離子所產生的催化 效應,可能導致比在去離子水中的反應速率更快。

    Our water system is prone to the harm of the metabolites produced by the cyanobacteria. These metabolites can be consumed by humans through drinking water or be exposed through recreational water uses in areas where cyanobacterial blooms occur. One of the most well-known cyanotoxin that receives most of the attention is microcystin. However, studies have shown the observed toxic effects associated with cyanobacteria cannot be simply attributed to microcystins, suggesting that other bioactive metabolites should also be considered. Thus, occurrence of cyanopeptides other than microcystins around the world should have been studied more. Other metabolites that are frequently appear aside from microcystins are anabaenopeptins and microginins. Studies showed that the toxic effects on the behavior of Daphnia magna with anabaenopeptin-B (AP-B) and microginin genotoxicity towards human cell line is present, which indicates further attention toward this cyanopeptides is important.
    In this study, water samples from different reservoirs in Taiwan were investigated for its cyanopeptides contents. Aside from that, further examination for two kinds of cyanopeptides (Anabaenopeptin-B and Microginin 527) were also investigated for understanding their reaction rates with permanganate and chlorine.
    The experimental results show that in those water samples, the cyanopeptides occurrence is apparent. Dominating species is microcystin, however the occurrence frequency of both Anabaenopeptin-B and Microginin 527 are visible in all of the water samples. Aside from that, it was also found that sedimentation and filtration processes are not effective enough in terms of removing cyanotoxins in the clear water while biological treatment or reverse osmosis membrane were able to effective remove most of the studied cyanoptoxins.
    From the oxidation experiments conducted, the results for rate constants of oxidation by permanganate for AP-B ranged from 31.08 to 97.5 M-1s-1 and for MG527 ranged from 167.59 to 284.93 M-1s-1. The rate constants of oxidation by chlorine for AP-B were 76.42 – 276.05 M-1s-1 and for Microginin 527 were 182.79 – 370.43 M-1s-1. Greater rate constant of Microginin 527 was possibly caused by the linear structure compared to Anabaenopeptin-B cyclic peptide structure. Faster reaction rate phenomenon in the raw water system compared to the DI water was possibly due to the catalysis process by iron ion in the natural water system, which may enhanced the reaction. More studies are suggested to be conducted for better understanding the occurrence and treatment of cyanopeptides.

    Table of Contents Abstract II 中文摘要 IV Acknowledgments VI List of tables X List of figures XII 1 Chapter I 1 1.1 Background 1 1.2 Research Objectives 2 2 Chapter II 3 2.1 Occurrence of Cyanopeptides 3 2.2 Anabaenopeptin 11 2.2.1 Anabaenopeptin Structure and Characteristics 11 2.2.2 Toxicity of Anabaenopeptin 13 2.3 Microginins 13 2.3.1 Microginin Structure 13 2.3.2 Toxicity of Microginins 14 2.4 Drinking Water Treatment Plant (DWTP) 15 2.5 Oxidation Process of Cyanotoxins 15 3 Chapter III 19 3.1 Overview of the Experimental Design 19 3.2 Environmental Sample Preparation 20 3.3 Solid Phase Extraction 21 3.3.1 Experimental Equipment: 21 3.3.2 Chemical and Reagents 21 3.3.3 Solid Phase Extraction Process 21 3.3.4 Cyanotoxins Concentration Calculation 22 3.4 Oxidation with Permanganate 22 3.4.1 Experimental Reagents and Equipment 22 3.4.2 Overall Process Description 23 3.5 Chlorination Experiments 23 3.5.1 Experimental Reagents and Equipment 23 3.5.2 Overall Process Description 23 3.6 Liquid Tandem Mass Spectrometry 24 3.6.1 Experimental Reagents and Equipment 26 3.7 UV-Vis Spectrophotometer 26 3.7.1 Reagents and Equipment 26 3.7.2 Residual Permanganate Detection Methods 27 3.7.3 Residual Free Chlorine Detection Methods 27 4 Chapter IV 28 4.1 Cyanopeptides Distribution in WTP Processes 28 4.2 Oxidation by Permanganate and Chlorine 41 4.2.1 Permanganate Oxidation of Anabaenopeptin-B 42 4.2.2 Anabaenopeptin-B Chlorination 46 4.2.3 Permanganate Oxidation of Microginin 527 49 4.2.4 Microginin 527 Chlorination 51 5 Chapter V 56 6 References 57

    Acero, J. L., Rodriguez, E., & Meriluoto, J. (2005). Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Res, 39(8), 1628-1638. doi:10.1016/j.watres.2005.01.022
    Almuhtaram, H., Cui, Y., Zamyadi, A., & Hofmann, R. (2018). Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Toxins, 10(11). doi:10.3390/toxins10110430
    Antoniou Maria, G., de la Cruz Armah, A., & Dionysiou Dionysios, D. (2005). Cyanotoxins: New Generation of Water Contaminants. Journal of Environmental Engineering, 131(9), 1239-1243. doi:10.1061/(ASCE)0733-9372(2005)131:9(1239)
    Baumann, H. I., & Jüttner, F. (2008). Inter-annual stability of oligopeptide patterns of Planktothrix rubescens blooms and mass mortality of Daphnia in Lake Hallwilersee. Limnologica, 38(3), 350-359. doi:https://doi.org/10.1016/j.limno.2008.05.010
    Beversdorf, L. J., Weirich, C. A., Bartlett, S. L., & Miller, T. R. (2017). Variable Cyanobacterial Toxin and Metabolite Profiles across Six Eutrophic Lakes of Differing Physiochemical Characteristics. Toxins, 9(2). doi:10.3390/toxins9020062
    Boas, L. d. A. V., Senra, M. V. X., Fernandes, K., Gomes, A. M. d. A., Pedroso Dias, R. J., Pinto, E., & Fonseca, A. L. (2020). In vitro toxicity of isolated strains and cyanobacterial bloom biomasses over Paramecium caudatum (ciliophora): Lessons from a non-metazoan model organism. Ecotoxicology and Environmental Safety, 202, 110937. doi:https://doi.org/10.1016/j.ecoenv.2020.110937
    Bober, B., & Bialczyk, J. (2017). Determination of the toxicity of the freshwater cyanobacterium Woronichinia naegeliana (Unger) Elenkin. Journal of Applied Phycology, 29(3), 1355-1362. doi:10.1007/s10811-017-1062-1
    Bogialli, S., Bortolini, C., Di Gangi, I. M., Di Gregorio, F. N., Lucentini, L., Favaro, G., & Pastore, P. (2017). Liquid chromatography-high resolution mass spectrometric methods for the surveillance monitoring of cyanotoxins in freshwaters. Talanta, 170, 322-330. doi:https://doi.org/10.1016/j.talanta.2017.04.033
    Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol, 91(3), 1049-1130. doi:10.1007/s00204-016-1913-6
    C W S Dickens, P. M. G. a. S. F. (1996). ALGAL RUPTURE DURING ABSTRACTION FROM RESERVOIRS AND THE CONSEQUENCES FOR WATER TREATMENT. WATER RESEARCH COMMISSION. Retrieved from http://www.wrc.org.za/wp-content/uploads/mdocs/558-1-96.pdf
    Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, R. J., Jochimsen, E. M., Lau, S., . . . Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental health perspectives, 109(7), 663-668. doi:10.1289/ehp.01109663
    Chang, H.-C. (2021). Development and Application of Analysis Method for Seven Types of Cyanopeptides and Cyanotoxins in Water.
    Chen, J.-J., & Yeh, H.-H. (2005). The mechanisms of potassium permanganate on algae removal. Water Research, 39(18), 4420-4428. doi:https://doi.org/10.1016/j.watres.2005.08.032
    Cheung, M. Y., Liang, S., & Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51(1), 1-10. doi:10.1007/s12275-013-2549-3
    Christensen, V. G., Olds, H. T., Norland, J., & Khan, E. (2021). Phytoplankton Community Interactions and Cyanotoxin Mixtures in Three Recurring Surface Blooms within One Lake. Journal of Hazardous Materials, 128142. doi:https://doi.org/10.1016/j.jhazmat.2021.128142
    Di Pofi, G., Favero, G., Nigro Di Gregorio, F., Ferretti, E., Viaggiu, E., & Lucentini, L. (2020). Multi-residue Ultra Performance Liquid Chromatography-High resolution mass spectrometric method for the analysis of 21 cyanotoxins in surface water for human consumption. Talanta, 211, 120738. doi:https://doi.org/10.1016/j.talanta.2020.120738
    Ding, J., Shi, H., Timmons, T., & Adams, C. (2010). Release and Removal of Microcystins from Microcystis during Oxidative-, Physical-, and UV-Based Disinfection. Journal of Environmental Engineering, 136(1), 2-11. doi:10.1061/(ASCE)EE.1943-7870.0000114
    European Commission. (2005). European Commission under the Fifth Framework Programme and contributing to the implementation of the Key Action "Sustainable Management and Quality of Water": Best practice guidance for management of cyanotoxins in water supplies (Annexe 1): 143.
    Fan, J., Ho, L., Hobson, P., & Brookes, J. (2013). Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Research, 47(14), 5153-5164. doi:https://doi.org/10.1016/j.watres.2013.05.057
    Ferranti, P., Fabbrocino, S., Chiaravalle, E., Bruno, M., Basile, A., Serpe, L., & Gallo, P. (2013). Profiling microcystin contamination in a water reservoir by MALDI-TOF and liquid chromatography coupled to Q/TOF tandem mass spectrometry. Food Research International, 54(1), 1321-1330. doi:https://doi.org/10.1016/j.foodres.2012.12.028
    Gaillardet, J., Viers, J., & Dupré, B. (2003). 5.09 - Trace Elements in River Waters. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 225-272). Oxford: Pergamon.
    Gijsbertsen-Abrahamse, A. J., Schmidt, W., Chorus, I., & Heijman, S. G. J. (2006). Removal of cyanotoxins by ultrafiltration and nanofiltration. Journal of Membrane Science, 276(1), 252-259. doi:https://doi.org/10.1016/j.memsci.2005.09.053
    Grabowska, M., Kobos, J., Toruńska-Sitarz, A., & Mazur-Marzec, H. (2014). Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Archives of Microbiology, 196(10), 697-707. doi:10.1007/s00203-014-1008-9
    Grigor'evich, R. (2015). A Review of Application of Total Reflection X-ray Fluorescence Spectrometry to Water Analysis. Applied Spectroscopy Reviews, 50, 443–472.
    Guan, X., He, D., Ma, J., & Chen, G. (2010). Application of permanganate in the oxidation of micropollutants: a mini review. Frontiers of Environmental Science & Engineering in China, 4(4), 405-413. doi:10.1007/s11783-010-0252-8
    He, X., Liu, Y.-L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., . . . Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174-193. doi:https://doi.org/10.1016/j.hal.2016.01.001
    Ho, L., Hoefel, D., Palazot, S., Sawade, E., Newcombe, G., Saint, C. P., & Brookes, J. D. (2010). Investigations into the biodegradation of microcystin-LR in wastewaters. Journal of Hazardous Materials, 180(1), 628-633. doi:https://doi.org/10.1016/j.jhazmat.2010.04.081
    How, Z. T., Linge, K. L., Busetti, F., & Joll, C. A. (2017). Chlorination of Amino Acids: Reaction Pathways and Reaction Rates. Environmental Science & Technology, 51(9), 4870-4876. doi:10.1021/acs.est.6b04440
    Ishida, K., Matsuda, H., & Murakami, M. (1998). Four new microginins, linear peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron, 54(44), 13475-13484. doi:https://doi.org/10.1016/S0040-4020(98)00826-6
    Janssen, E. M. L. (2019). Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-499. doi:https://doi.org/10.1016/j.watres.2018.12.048
    Jeong, B., Oh, M.-S., Park, H.-M., Park, C., Kim, E.-J., & Hong, S. W. (2017). Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways. Water Research, 114, 189-199. doi:https://doi.org/10.1016/j.watres.2017.02.043
    Kim, M. S., Lee, H.-J., Lee, K.-M., Seo, J., & Lee, C. (2018). Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited. Environmental Science & Technology, 52(12), 7054-7063. doi:10.1021/acs.est.8b01447
    Kodani, S., Suzuki, S., Ishida, K., & Murakami, M. (1999). Five new cyanobacterial peptides from water bloom materials of lake Teganuma (Japan). FEMS Microbiology Letters, 178(2), 343-348. doi:https://doi.org/10.1016/S0378-1097(99)00379-1
    Laksono, F., & Kim, I.-K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase. DESALINATION AND WATER TREATMENT, 58, 391-398. doi:10.5004/dwt.2017.11428
    Laszakovits, J. R., & MacKay, A. A. (2019). Removal of cyanotoxins by potassium permanganate: Incorporating competition from natural water constituents. Water Research, 155, 86-95. doi:https://doi.org/10.1016/j.watres.2019.02.018
    Lenz, K. A., Miller, T. R., & Ma, H. (2019). Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. Chemosphere, 214, 60-69. doi:https://doi.org/10.1016/j.chemosphere.2018.09.076
    Liu, B., Qu, F., Liang, H., Van der Bruggen, B., Cheng, X., Yu, H., . . . Li, G. (2017). Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection. Water Research, 112, 83-92. doi:https://doi.org/10.1016/j.watres.2017.01.033
    Mazur-Marzec, H., Kaczkowska, M. J., Blaszczyk, A., Akcaalan, R., Spoof, L., & Meriluoto, J. (2013). Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions. Marine Drugs, 11(1). doi:10.3390/md11010001
    Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303-327. doi:https://doi.org/10.1016/j.envint.2013.06.013
    Monteiro, P. R., do Amaral, S. C., Siqueira, A. S., Xavier, L. P., & Santos, A. V. (2021). Anabaenopeptins: What We Know So Far. Toxins, 13(8), 522. doi:10.3390/toxins13080522
    Monteiro, P. R., do Amaral, S. C., Siqueira, A. S., Xavier, L. P., & Santos, A. V. (2021). Anabaenopeptins: What We Know So Far. Toxins, 13(8). doi:10.3390/toxins13080522
    Naceradska, J., Pivokonsky, M., Pivokonska, L., Baresova, M., Henderson, R. K., Zamyadi, A., & Janda, V. (2017). The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation. Water Research, 114, 42-49. doi:https://doi.org/10.1016/j.watres.2017.02.029
    Pawlik-Skowrońska, B., & Bownik, A. (2021). Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon, 198, 1-11. doi:https://doi.org/10.1016/j.toxicon.2021.04.023
    Pietsch, J., Bornmann, K., & Schmidt, W. (2002). Relevance of Intra‐ and Extracellular Cyanotoxins for Drinking Water Treatment. Acta hydrochimica et hydrobiologica, 30, 7-15. doi:10.1002/1521-401X(200207)30:1<7::AID-AHEH7>3.0.CO;2-W
    Piezer, K., Li, L., Jeon, Y., Kadudula, A., & Seo, Y. (2021). The Application of Potassium Permanganate to Treat Cyanobacteria-Laden Water: a Review. Process Safety and Environmental Protection, 148, 400-414. doi:https://doi.org/10.1016/j.psep.2020.09.058
    Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., & Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46(9), 2881-2890. doi:https://doi.org/10.1016/j.watres.2012.02.045
    Rodríguez, E., Onstad, G. D., Kull, T. P. J., Metcalf, J. S., Acero, J. L., & von Gunten, U. (2007). Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 41(15), 3381-3393. doi:https://doi.org/10.1016/j.watres.2007.03.033
    Rodríguez, E., Sordo, A., Metcalf, J. S., & Acero, J. L. (2007). Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Research, 41(9), 2048-2056. doi:https://doi.org/10.1016/j.watres.2007.01.033
    Shammas, N. K., Yang, J. Y., Yuan, P.-C., & Hung, Y.-T. (2005). Chemical Oxidation. In L. K. Wang, Y.-T. Hung, & N. K. Shammas (Eds.), Physicochemical Treatment Processes (pp. 229-270). Totowa, NJ: Humana Press.
    Siegrist, R. L., West, O. R., Crimi, M. L., & Lowe, K. S. (2001). Principles and practices of in situ chemical oxidation using permanganate: Battelle Press.
    Singh, N., & Lee, D. G. (2001). Permanganate:  A Green and Versatile Industrial Oxidant. Organic Process Research & Development, 5(6), 599-603. doi:10.1021/op010015x
    Skafi, M., Vo Duy, S., Munoz, G., Dinh, Q. T., Simon, D. F., Juneau, P., & Sauvé, S. (2021). Occurrence of microcystins, anabaenopeptins and other cyanotoxins in fish from a freshwater wildlife reserve impacted by harmful cyanobacterial blooms. Toxicon, 194, 44-52. doi:https://doi.org/10.1016/j.toxicon.2021.02.004
    Spoof, L., Błaszczyk, A., Meriluoto, J., Cegłowska, M., & Mazur-Marzec, H. (2015). Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Marine Drugs, 14(1), 8-8. doi:10.3390/md14010008
    Stewart, R. (1964). Oxidation mechanisms : applications to organic chemistry. New York: W.A. Benjamin, Inc.
    Szlag, D. C., Spies, B., Szlag, R. G., & Westrick, J. A. (2019). Permanganate Oxidation of Microcystin-LA: Kinetics, Quantification, and Implications for Effective Drinking Water Treatment. Journal of Toxicology, 2019, 3231473. doi:10.1155/2019/3231473
    Tonk, L., Welker, M., Huisman, J., & Visser, P. M. (2009). Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC 7806. Harmful Algae, 8(2), 219-224. doi:https://doi.org/10.1016/j.hal.2008.05.005
    Ujvárosi, A. Z., Hercog, K., Riba, M., Gonda, S., Filipič, M., Vasas, G., & Žegura, B. (2020). The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere, 240, 124880. doi:https://doi.org/10.1016/j.chemosphere.2019.124880
    von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467. doi:https://doi.org/10.1016/S0043-1354(02)00457-8
    Waldemer, R. H., & Tratnyek, P. G. (2006). Kinetics of Contaminant Degradation by Permanganate. Environmental Science & Technology, 40(3), 1055-1061. doi:10.1021/es051330s
    Welker, M., Marsálek, B., Sejnohová, L., & von Döhren, H. (2006). Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides, 27(9), 2090-2103. doi:10.1016/j.peptides.2006.03.014
    Welker, M., Maršálek, B., Šejnohová, L., & von Döhren, H. (2006). Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: Toward an understanding of metabolic diversity. Peptides, 27(9), 2090-2103. doi:https://doi.org/10.1016/j.peptides.2006.03.014
    Welker, M., & Von Döhren, H. (2006). Cyanobacterial peptides — Nature's own combinatorial biosynthesis. FEMS Microbiology Reviews, 30(4), 530-563. doi:10.1111/j.1574-6976.2006.00022.x
    Zamyadi, A., Dorner, S., Sauvé, S., Ellis, D., Bolduc, A., Bastien, C., & Prévost, M. (2013). Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res, 47(8), 2689-2700. doi:10.1016/j.watres.2013.02.040
    Zervou, S. K., Gkelis, S., Kaloudis, T., Hiskia, A., & Mazur-Marzec, H. (2020). New microginins from cyanobacteria of Greek freshwaters. Chemosphere, 248, 125961. doi:10.1016/j.chemosphere.2020.125961

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE