簡易檢索 / 詳目顯示

研究生: 葉尚諭
Ye, Shang-Yu
論文名稱: 邊界元素法分析二維異向體之旋轉及自重效應
Boundary Element Analysis of 2D Anisotropic Bodies Subjected to Rotation and Self-weight
指導教授: 夏育群
Shiah, Y.C.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 68
中文關鍵詞: 邊界元素法二維異向靜彈性體體內力
外文關鍵詞: Boundary Element Method, 2D Anisotropic, Body-force
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的邊界元素法在分析有自體力效應的問題時有個缺點,在邊界積分式中會產生一域積分,在二維異向靜彈力中,已經將此域積分轉換成邊界積分,然而此轉換式中含有一項額外線積分,在分析多連通區域時,其會導致運算效率低落,特別是幾何形狀複雜的問題,本論文提出一個新的方法將域積分轉換成邊界積分,且不需要額外的線積分,藉由此方法讓邊界元素法完全恢復其邊界求解的特性,最後將以幾個實際範例應用來驗證公式的正確性。

    As an evident drawback for using the conventional boundary element method (BEM), an extra domain integral is present in the boundary integral equation when body-force effects are involved. For 2D anisotropic elastostatics, the extra domain integral has been exactly transformed to the boundary; however, an additional line integral intersecting the domain is involved for general cases to validate the transformation. For a multiply connected region, this process is quite involving and computation-wise inefficient indeed, especially when its geometry is very complicated. In this article, a new approach is proposed to validate the transformation, yet without involving extra line integrals. By this approach, the BEM's notion as a boundary solution technique is completely restored. In the end, a few benchmark problems are studied to demonstrate the veracity of formulations as well as our successful implementation in an existing BEM code.

    中文摘要 I 英文摘要 II 誌謝 XII 表目錄 XV 圖目錄 XVI 第一章 導論 1 1.1 前言 1 1.2 研究動機及目的 4 1.3 文獻回顧 5 1.4 研究內容簡介 7 第二章 理論回顧 9 2.1 邊界積分方程式 9 2.2二維異向靜彈力 12 2.3格林定理用於二維靜彈邊界積分式 15 2.4內部點分析 22 第三章 傅立葉級數轉換 25 3.1函數Hj及Wj以傅立葉級數表示方法ㄧ 25 3.2函數Hj及Wj以傅立葉級數表示方法二 33 3.3內部點分析 38 第四章 數值範例 42 4.1範例ㄧ、矩形板 47 4.2範例二、矩形板內有中空圓 53 4.3範例三、多孔圓板 59 第五章 結論與未來展望 63 參考文獻 64 附錄 66

    【1】 Cruse, T.A. (1988), Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Academic Publisher, Dordrecht, Netherlands.
    【2】 Camp, C.V.; Gipson G.S. (1992): Boundary element analysis of nonhomogeneous biharmonic phenomena, Springer-Verlag, Berlin.
    【3】 Deb, A.; Banerjee, P.K. (1990): BEM for general anisotropic 2D elasticity using particular integrals, Commun. Appl. Num. Meth. 6:111-119.
    【4】 Nardini, D.; Brebbia, C. A. (1982): A new approach to free vibration analysis using boundary elements, Boundary Element Methods in Engineering, Computational Mechanics Publications, Southampton.
    【5】 Danson, D. (1983): Linear isotropic elasticity with body forces, Progress in Boundary Element Methods, Brebbia, C. A., Ed., Pentech Press, London.
    【6】 Shiah, Y.C.; Tan, C.L. (1999): Calculation of interior point stresses in two-dimensional boundary element analysis of anisotropic bodies with body forces”, Journal of Strain Analysis for Engineering Design 34, pp.117-128.
    【7】 Zhang, J.J.; Tan C.L.; Afagh, F.F. (1996): A general exact transformation of body-force volume integral in BEM for 2D anisotropic elasticity, Computational Mechanics 9 (2):1-10.
    【8】 Shiah, Y.C. (2014): Analytical transformation of the volume integral for the BEM treating 3D anisotropic elastostatics involving body-force, Computer Methods in Applied Mechanics and Engineering 278, pp 404-422.
    【9】 Lekhnitskii, S. G. (1981): Anisotropic Plate, Gordon and Breach, London.
    【10】 Cruse, T.A. and Swedlow, J.L.(1971): Interactive program for analysis and design problems in advanced composites technology. Report AFML-TR-71-268,US Air Force Materials Laboratory.
    【11】 夏育群、陳春來,「邊界元素法之入門介紹」,高立圖書有限公司,中華民國93年12月15日。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE