簡易檢索 / 詳目顯示

研究生: 邱筱詠
Chiu, Hsiao-Yung
論文名稱: 應用基於空間向量之混合切換技術於同步磁阻馬達之電流與轉矩漣波抑制
A Space Vector-Based Hybrid Switching Technique for Current and Torque Ripple Reduction of SynRM
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 同步磁阻馬達混合型開關切換電流漣波抑制轉矩漣波抑制
外文關鍵詞: Synchronous Reluctance Motors (SynRM), Hybrid Switching Techniques (H.S.T.), Current Ripple Suppression, Torque Ripple Suppression
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來節能意識抬頭,對於能源的需求急遽上升,同步磁阻馬達其結構強健、不需要內置永久磁鐵、價格低廉等優點,受到工業界的關注。因應不同場合,同步磁阻馬達須滿足低轉矩漣波、低電流漣波的特性需求。故本論文的目標,係以探討基於空間向量之混合型切換技術應用於同步磁阻馬達之電流與轉矩漣波抑制分析。
    本論文採用MATLAB/Simulink建立一1.5 kW同步磁阻馬驅動系統的模擬平台,以分析傳統空間向量切換技術與基於空間向量之混合型切換技術,對於同步磁阻馬達之轉矩與電流漣波的比較。透過模擬分析可知,應用基於空間向量之混合型切換技術於同步磁阻馬達,可大幅改善電流漣波及轉矩漣波,最後透過硬體在線迴路系統(Hardware in the loop, HIL)進行實作驗證模擬結果。

    In recent years, the energy-saving awareness has been growing up quickly since the demand of energy consuming is also increasing at a dramatic rate in the world. For the matter, the synchronous reluctance motors (SynRM) attract great attention form industrial circles for its strong structure, no built-in permanent magnets, and low cost. To be a suitable candidate for various applications, SynRM should have its owned performance of the low current ripple and low torque ripple functions. Thus, the goal of this research is to explore the applications of hybrid switching techniques based on space vector and furthermore, to analyze the current and torque ripple suppression for the SynRM.
    MARLAB/Simulink software is used in this thesis to establish a simulation platform of 1.5kW SynRM drive system. And in this platform, the conventional space vector switching technique will be in comparison with the space vector-based hybrid switching technique to investigate the torque and current ripple of SynRM. The result shows that the SynRM used the applications of hybrid switching techniques based on space vector can further significantly suppress the current ripple and torque ripple. Finally, the Hardware in the Loop (HIL) is applied as the experimental prototype to validate the simulation results.

    摘要 I 誌謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 符號表 XXIII 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 7 1.2.1同步磁阻馬達設計 7 1.2.2同步磁阻馬達驅動 8 1.2.2.1馬達驅動簡介 8 1.2.2.2同步磁阻馬達驅動 8 1.2.3脈衝寬度調變之切換技術 9 1.3研究動機與目的 12 1.4本文架構 14 第二章 同步磁阻馬達基本理論 15 2.1簡介 15 2.2磁阻力原理 16 2.3座標轉換 17 2.3.1 Clarke轉換 20 2.3.2 Park轉換 22 2.3.3 Park逆轉換 23 2.3.4 Clarke逆轉換 24 2.4同步磁阻馬達等效電路 25 2.4.1 等效電路圖 26 2.4.2相量圖 33 2.4.3轉矩方程式 34 2.4.4比例積分控制器設計 34 2.5空間向量調變(SVPWM) 42 第三章 混合切換技術 46 3.1混合切換法選擇 46 3.2漣波計算方法 52 3.3混合切換技術(Hybrid Switching Technique) 57 3.4小結 76 第四章 模擬驗證與實作結果 77 4.1模擬驗證 77 4.1.1模擬架構 79 4.1.2模擬分析 83 4.2實作結果 99 4.2.1程式流程圖 100 4.2.2 HIL測試結果 103 第五章 結論與建議 108 5.1結論 108 5.2建議 109 參考文獻 110

    [1]工研院機械所,「2019全球馬達節能推動現況與趨勢」(2019, Oct),Available: file:///C:/Users/user/Downloads/439_8_p061-06
    4-chan.pdf
    [2]A. D. Almeida, F. Ferreira, and G. Baoming, “Beyond induction motors—Technology trends to move up efficiency,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2103–2114, May/Jun. 2014.
    [3]K.-T. Kim, J. Park, B. Kim, and J. Hur, “Comparison of the fault characteristics of IPM-type and SPM-type BLDC motors under InterTurn Faults conditions using Winding Function Theory,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 986–994, Jul. 2013.
    [4]蘇士維,同步磁阻馬達驅動系統之開發及其無位置感測控制研究,國立清華大學電機工程學系碩士論文,2017。
    [5]工研院機械所,「節能高效率磁阻電機」(2018, Apr.),Available: file:///C:/Users/user/Downloads/2065_421-L1-p002-003%20(1).pdf
    [6]工研院機械所,「高效率馬達節能應用技術」(2008),Available: http://www.tami.org.tw/sp1/bulletin/other/other_990629.pdf
    [7]J. Kolehmainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450–456, Jun. 2010.
    [8]科學發展491期,「馬達及其驅動控制」(2013, Mar),Available: https://ejournal.stpi.narl.org.tw/sd/download?source=10211-08.pdf&vlId=6A88717B-7887-4908-8B1C-CD4D7767B580&nd=1&ds=1
    [9]R. E. Betz, R. Lagerquist, M. Jovanovic, T. J. E. Miller, and R. H. Middleton, “Control of synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 39, Nov./ Dec. 1993.
    [10]T. J. E. Miller, C. Cossar, and A. J. Hutton, “Design of a synchronous reluctance motor drive,” in Proc. Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, CA, Oct. 1989, pp. 122-127.
    [11]J. Holz, “Pulsewidth modulation—a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, Oct. 1992.
    [12]J. Holtz, “Pulsewidth modulation for electronic power conversion,” Proc. IEEE, vol. 82, no. 8, pp. 1194-1214, Aug. 1994.
    [13]D. Casadei, G. Serra, A. Tani, and L. Zarri, “Theoretical and experimental analysis for the RMS current ripple minimization in induction motor drives controlled by SVM technique,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1056-1065, Oct. 2004.
    [14]S. Fukuda and Y. Iwaji, “Introduction of the harmonic distortion determining factor and its application to evaluating real time PWM inverters,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 149-154, Jan./ Feb. 1995.
    [15]K. Sri Gowri, T. Brahmanada Reddy, and Ch. Sai Babu, “Switching loss characteristics of advanced DPWM methods using space vector based clamping sequences,” IEEE Symp. Ind. Election. Appl., Oct. 2009.
    [16]S. Das, G. Narayanan, and M. Pandey, “Space-vector-based hybrid pulse width modulation techniques for a three-level inverter,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4580-4591, Apr. 2014.
    [17]K. Basu, J. S. S. Prasad, G. Narayanan, H. K. Krishnamurthi, and R. Ayyanar, “Reduction of torque ripple in induction motor drives using an advanced hybrid PWM technique,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2085-2091, Jun. 2010.
    [18]D. Zhao, Hari, V.S.S.P.K., G. Narayanan, and R. Ayyanar “Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss,” IEEE Trans. Power Electron., pp. 760-774, Sep. 2009
    [19]H. Krishnamurthy, G. Narayanan, R. Ayyanar, and V. T. Ranganathan, “Design of space vector-based hybrid PWM techniques for reduced current ripple,” in Proc. IEEE Appl. Power Electron. Conf. (APEC), Feb. 2003, pp. 583-588.
    [20]G. Narayanan, D. Zhao, H. K. Krishnamurthi, R. Ayyanar, and V. T. Ranganathan, “Space vector based hybrid PWM techniques for reduced current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1614–1627, Apr. 2008.
    [21]C. H. Hong, H. C. Liu, H. S. Seol, H. W. Jun, and J. Lee, “Decrease torque ripple for SynRM using barrier arrangement design,” in Proc. Int. Conf. Elect. Mach. Syst., Oct. 2014, pp 1834-1837.
    [22]Bîrte, L Szabó, H Van der Auweraer, and C. Martis, “Study of torque ripple and noise for different rotor topologies of a synchronous reluctance machine,” Int. Symp. Advanced Topics Elect. Eng., May 2015.
    [23]A. Sivaprakasam and T. Manigandan “A simple method to reduce torque ripple and mechanical vibration in direct torque controlled permanent magnet synchronous motor,” J. Eng., vol. 15, no. 2, June 2013.
    [24]C. Stuckmann, “Noise & Vibration Levels of modern Electric Motors”, PCIM Europe, pp. 1-8, 2016.
    [25]Y. Chen,「Vibration Motor Application note」(2013, Apr),Available: https://www.egr.msu.edu/classes/ece480/capstone/spring13/group05/downloads/Application%20Note-yangyi.pdf
    [26]鄭品宏,具類神經網路補償之同步磁阻馬達滑模速度控制,國立雲林科技大學電機工程學系碩士論文,2004。
    [27]G. Newton,「Part 1: Using Vectors to Approximate the Neutral Current in a Three Phase Power System」 (1999, Nov.),Available: http://www.electrician2.com/electa1/electa3htm.htm
    [28]Microsemi,「Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementations User Guide」(2013),Available: https://www.microsemi.com/document-portal/
    doc_view/132799-park-inverse-park-and-clarke-inverse-clarke-transformations-mss-software-implementation-user-guide
    [29]T. Hanamoto, J. Yano, H. Ikeda, and T. Tsuji, “Hardware real time simulator of synchronous reluctance motor including three phase PWM inverter model,” in Proc. Int. Power Electron. Conf., June 2010, pp. 2005-2009.
    [30]K. Matsumoto, G. Hongwei, Y. Yanjun, and C. Shukang, “Sensorless control of SynRM based on PWM inverter carrier frequency component,” in Proc. Vehicle Power Propulsion Conf., pp. 1- 4, Sep. 2008.
    [31]T. Matsuo and T. A. Lipo, “Field oriented control of synchronous reluctance machine,” in Proc. Power Electron. Specialist Conf., June 1993.
    [32]A. Farhan, A. Saleh, and A. Shaltout, “High performance reluctance synchronous motor drive using field oriented control,” in Proc. Int. Conf. Modelling, Identification Control. Sep. 2013, pp. 181-186.
    [33]J. Haataja, A comparative performance study of four-pole induction motors and synchronous reluctance motors in variable speed drives, the degree of Doctor of Science, Lappeenranta University of Technology, 2003.
    [34]陳念慈,碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析,國立成功大學電機工程學系碩士論文,2019。
    [35]G. Q. Yu and Z. Ying, “Research of DSP-Based SVPWM vector control system of asynchronous motor”, in Proc. IEEE Int. Conf. Comput. Sci. Electron. Eng., pp. 151-155, vol. 1, March 2012.
    [36]G. Narayanan, H. K. Krishnamurthy, D. Zhao, and R. Ayyanar, “Advanced bus-clamping PWM techniques based on space vector approach,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 974-984, Jul. 2006.
    [37]陳譽,基於空間向量之混合型開關切換應用於微渦輪發電機運轉之電流漣波抑制,國立成功大學電機工程學系碩士論文,2018。

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE