| 研究生: |
張佑全 Chang, Yu-Chuan |
|---|---|
| 論文名稱: |
整合電腦繪圖程式與Triangle網格產生器於有限元素程式 Combine the Computer Graphics Programming and the Triangle Mesh Generator in Finite Element Code |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 應力強度因子 、網格產生器 、狄勞尼 、有限元素法 、電腦繪圖 、計算幾何 |
| 外文關鍵詞: | finite element method, computer graphics, Delaunay, mesh generator, stress intensity factor, computational geometry |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討二維網格產生器Triangle,於本實驗室開發軟體之整合,並撰寫計算幾何(Computational Geometry)程式,提供整合軟體使用,以及產生裂縫網格模型,以進行裂縫問題的模擬。
本研究使用Microsoft Visual Studio .Net 2003撰寫C++程式碼,將二維網格產生器Triangle分別整合至本實驗室以MFC開發的視窗介面,以及理星股份有限公司提供的CAD( Computer Aided Design )軟體開發環境中,使軟體擁有二維三角網格化的功能。並於視窗介面上,提供計算幾何之程式,以補足電腦繪圖功能的齊全,以及搭配網格產生器撰寫程式,產生裂縫網格模型,以探討裂縫尖端之應力強度因子。
The main goal of this research was to integrate 2D mesh generator, Triangle, into the developing software of our laboratory, to offer the computational geometry functionality for the software and to provide the crack mesh model for the simulation of the crack problem.
By using the C++ computer language on Microsoft Visual Studio.Net 2003, this research added 2D triangulation function to the MFC window graphic user interface, which was developed by our laboratory, and to the CAD (Computer Aided Design) software environment developed by the Rising Star company. On the window graphic user interface, it also complemented the computer graphic function by providing computational geometry codes. This research provided the auto-mesh function for crack problem such that the crack tip stress intensity factor can be got directly.
[1] J. R. Shewchuk, Triangle:Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, First Workshop on Applied Computational Geometry(Philadelphiia, Pennsylvania), pages 124-133, ACM, May 1996.
[2] J. R. Shewchuk, Delaunay Refinement Algorithms for Triangular Mesh Generation. Computational Geometry:Theory and Applications, 22(1-3):21-74, May 2002
[3] L. P. Chew, Constrained Delaunay Triangulations. Algorithmica 4(1):97-108, 1989.
[4] H. Edelsbrunner and T. S. Tan, An Upper Bound for Conforming Delaunay Triangulations. Discrete & Computational Geometry 10(2):197-213, 1993.
[5] J. R. Shewchuk, Delaunay Refinement Mesh Generation, Ph.D. thesis, School of Computer Science, Carnegie Mellon University, 1997. Available as Technical Report CMU-CS-97137.
[6] Alper Üngör's, Off-centers:A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations, Proceedings of LATIN 2004, page 152-161, April 5-9, Buenos Aires, Argentina.
[7] Alper Üngör's, Quality Triangulation Made Smaller, EWCG 2005, Eindhoven, 2005
[8] F. P. Preparata and M. I. Shamos, Computational Geometry. Springer -Verlag, New York/Berlin, 1985.
[9] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, 2001
[10] James Arvo, Graphic Gems II, AP Professional, Ithaca, page 7-9 473 -476, 1991
[11] Philip J.Schneider and David H.Eberly, Geometric Tools for Computer Graphics Morgan Kaufmann Publishers ,2003
[12] Mark W. Beall , An Object-Oriented Framework for the Reliable Automated Solution of Problems in Mathematical Physics, Eng. Comput. (Lond.) 15(1): 61-72, 1999
[13] Stefan Farestam and R. Bruce Simpson, A Framework for Advancing Front Techniques of Finite Element Mesh Generation, Univ. of Waterloo, BIT 35(2):210–232, 1995, Tech. report CS-93-38, 1994
[14] Bojan DolŠak, Ivan Bratko, and Anton Jezernik, Knowledge base for finite-element mesh design learned by inductive logic programming, Cambridge University Press, 1998
[15]林源富,“運用高階有限元素解破裂點尖端應力強度因子”, 國立成功大學機械工程研究所碩士論文, 2002.