簡易檢索 / 詳目顯示

研究生: 黃俊嘉
Huang, Jun-Jia
論文名稱: 應用於高聚光型之太陽能發電系統之適應性模糊控制追日系統
Adaptive Fuzzy Sun Tracking Control for High-Concentration Photovoltaic System
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 65
中文關鍵詞: 模糊控制基因演算法太陽追蹤
外文關鍵詞: Sun tracking, Fuzzy control, Genetic algorithm
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高聚光型太陽能(high-concentration photovoltaic, HCPV)發電系統係由高倍數之聚光透鏡,將來自太陽的平行光聚焦於III-V族太陽能電池上,因此能夠有效率的利用太陽能電池。但是隨著聚焦倍數增加,HCPV發電系統便需要一套高精度和高穩定性之追日系統,以維持HCPV發電系統的最佳功率輸出和供電可靠度,降低對電網穩定度的影響。
    為了達成上述的目標,本文結合模糊理論和基因演算法,設計一適應性模糊控制(adaptive fuzzy control, AFC)系統,並且將之應用於HCPV發電系統的追日系統上。首先,本系統以模糊語言變數和模糊控制規則描述追蹤太陽的行為,並應用基因演算法則線上最佳化模糊控制系統之歸屬函數,使追日系統能夠達到快速追蹤、減低穩態追蹤誤差和增加強健性。
    由於本文中HCPV發電系統係利用光感測器回授信號作為追日系統的輸入參數,所以容易受天氣和如灰塵遮蔽等外在環境因素影響其追蹤精度。因此,為了改善來自環境因素影響的追蹤誤差,本文另外設計兩個追蹤模式,分別為太陽軌跡追蹤和光感測器校正模式,輔助AFC追日系統。其中太陽軌跡追蹤模式係用以幫助追日系統避免光感測器的追蹤死角;而光感測器校正模式則係用來自動校正光感測器的追蹤精度,改善例如灰塵等陰影遮蔽對追日系統追蹤性能的影響。最後本文將AFC追日系統與傳統PID追日系統比較,顯示AFC追日系統較PID控制方法更具有良好的追蹤性能和適應性。

    Because the high-concentration photovoltaic(HCPV) system focus the sunlight to the solar cells of III-V by a high-concentration ratio lens, so that the solar cells is used in a high efficiency. But the HCPV system need a great precision sun tracking system to keep the high power output and stability, when the concentration ratio increase.
    In order to achieve the above aim, this thesis combine the fuzzy theory and the genetic algorithm, and design a adaptive fuzzy control(AFC) system for sun tracking system in HCPV. The first, the system use the fuzzy language and fuzzy rule to describe the sun tracking action, and set the fuzzy membership function by the genetic algorithm online optimization, so that the sun tracking system can achieve the fast tracking, reduce the steady-state tracking error ,and increase the robustness.
    Because the HCPV system take the photo-sensor feedback signal input to sun tracking, so that the tracking precision is sensitive to weather, dust, and the other external environmental factors. So, in order to improve the tracking error due to environmental factors, this thesis design the solar trajectory mode and photo-sensor correct mode to assist AFC sun tracking system. The solar trajectory mode is used to escape the dead space in photo-sensor tracking, and the photo-sensor correct mode is used to correct the tracking error automatically. Finally, this thesis compare the AFC sun tracking system and PID controller, and the sun tracking performance and robustness of AFC system is greater than PID controller.

    摘 要 I Abstract II 目 錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究背景及動機 1 1-2 文獻回顧 2 1-3 研究架構與方法 5 1-4 論文組織 6 第二章 高聚光型太陽能發電系統 7 2-1 系統簡介 7 2-2 HCPV發電系統供電架構與特性 8 2-3 HCPV發電模組架構 15 2-3-1 III-V族太陽能電池 15 2-3-2 聚光的方式與種類 16 2-3-3 聚光模組的影響 17 2-4 現有的追日系統 18 2-4-1 太陽軌跡追蹤法 19 2-4-2 光感測器與其太陽追蹤法 21 2-4-3 混合策略追蹤法 24 2-5 PID追日控制器設計 26 2-6 現有的追日控制問題 27 2-7 本章結論 29 第三章 適應性模糊控制追日系統 30 3-1 本章簡介 30 3-2 模糊控制理論 30 3-3 模糊控制器的基本架構 31 3-3-1 模糊化 31 3-3-2 模糊規則庫 32 3-3-3 模糊推論 32 3-3-4 解模糊化 33 3-4 基因演算法 34 3-4-1 基因演算法的運算 34 3-4-2 基因演算法的最佳化流程 35 3-4-3 實數型基因演算法 36 3-5 AFC追日系統設計 38 3-5-1 AFC追日系統架構 38 3-5-2 AFC追日系統建構方法 41 3-6 光感測器校正模式設計 44 3-6-1 MPPT對光感測器校正模式的影響 44 3-6-2 光感測器校正模式原理與建構方法 45 3-7 本章結論 48 第四章 模擬與實驗結果 49 4-1 現有HCPV系統的測試架構 49 4-1-1 系統的硬體測試架構 49 4-1-2 系統的程式測試流程圖 51 4-1-3 系統測試的評估方式與適應函數計算 52 4-2 現有PID追日系統建構與實驗結果 52 4-3 AFC追日系統建構與實驗結果 54 4-4 AFC追日與PID追日控制方法比較 56 4-5 光感測器校正模式的模擬與實驗結果 57 4-6 本章結論 59 第五章 結論與未來研究方向 60 5-1 結論 60 5-2 未來研究方向 61 參考文獻 62

    [1] M. Hester, “Oil and Energy Trends: Annual Statistical Review,” Blackwell Energy Research, 2007.
    [2] P. J. Verlinden, A. Terao, S. Daroczi, R. A. Crane, W. P. Mulligan, M.J. Cudzinovic, and R. M. Swanson “One-Year Comparison of a Concentrator Module with Silicon Point-Contact Solar Cell to a Fixed Flat Plate Module in Northern California,” Sun Power Cooperation, 430 India Way, Sunnyvale, CA 94085, USA.
    [3] S. Cowley, S. Horne, S. Jensen, and R. MacDonald, “Acceptance Angle Requirements for Point Focus CPV Systems,” 4th Inter. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, 2007.
    [4] P. Roth, A. Georgiev, and H. Boudinov, “Design and Construction of a System for Sun-tracking,” Renewable energy, Vol. 29, pp. 393–402, 2004.
    [5] S. Abdallah and S. Nijmeh, “Two Axes Sun Tracking System with PLC Control,” Energy Conversion and Management, Vol. 45, pp. 1931–1939, 2004.
    [6] G. Bakos, “Design and Construction of A Two-Axis Sun Tracking System for Parabolic Trough Collector (PTC) Efficiency Improvement,” Renewable Energy, Vol. 31, pp. 2411-2421, 2006.
    [7] P. Roth, A. Georgiev, and H. Boudinov, “Cheap Two Axis Sun Following Device,” Energy Conversion and Management, Vol. 46, pp. 1179-1192, 2005.
    [8] F. R. Rubio, M. G. Ortega, F. Gordillo, and M. Lo′pez-Martı′nez, “Application of New Control Strategy for Sun Tracking,” Energy Conversion and Management, Vol. 48, pp. 2174–2184, 2007.
    [9] B. M. Manuel, C. Diego, P. Alarcn, L. M. Teodoro, and L. C. Martn, “Computing the Solar Vector,” Solar energy, Vol.70, No. 5, pp. 431-441, 2001.
    [10] I. Reda and A. Andreas, “Solar Position Algorithm for Solar Radiation Applications,” Solar energy, 76, pp.577-589, 2004.
    [11] R. Grena, “An Algorithm for the Computation of the Solar Position,” Solar energy, Vol. 82, pp. 462-470, 2008.
    [12] 蘇春木與張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司,二版,2004。
    [13] Y. S. Zhou and L. Y. Lai, “Optimal Design for Fuzzy Controllers by Genetic Algorithms,” IEEE Transactions on Industry Applications, Vol. 36, Issue 1, pp. 93-97, Feb. 2000.
    [14] H. T. Yang and C. C. Liao, “Adaptive Fuzzy Diagnosis System for Dissolved Gas Analysis of Power Transformers,” IEEE Transactions on Power Delivery, Vol. 14, No. 4, pp. 1342-1350, Oct. 1999.
    [15] J. S. R. Jang, “Self-learning Fuzzy Controllers Based on Temporal Backpropagation, “ IEEE Transactions on Neural Networks, Vol. 3, No. 5, pp. 714 –723, Sept. 1992.
    [16] F. J. Lin and P. K. Huang, “Recurrent Fuzzy Neural Network Using Genetic Algorithm for Linear Induction Motor Servo Drive,” IEEE Conference on Industrial Electronics and Applications, 2006.
    [17] A. Luque1, G. Sala, and I. Luque-Heredia, “Photovoltaic Concentration at the Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 413-428, 2006.
    [18] H. S. Lee, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Field Test and Analysis: The Behavior of 3-J Concentrator Cells Under the Control of Cell Temperature,” 31st IEEE Photovoltaic Specialists Conference and Exhibition, 2005.
    [19] Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, K. Araki, N. J. Ekins-Daukes, and T. Sakakibara, “Modeling of Module Temperature of a 70 Concentrator PV System,” 19th European Photovoltaic Solar Energy Conference and Exhibition, 2004.
    [20] C. Algora, “Very-High-Concentration Challenges of III-V Multijiunction Solar Cells,” Concentrator Photovoltaics, Chapter 5, Springer-Verlag Berlin Heidelberg, Vol. 130, pp. 89-111, 2007.
    [21] G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, J. Lasich, and N. H. Karam “Multijunction Solar Cells for Dense-Array Concentrators, “Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 1, pp. 625-627, May 2006,
    [22] J. S. Coventry, “Performance of a Concentrating Photovoltaic/Thermal Solar Collector, “ Solar energy, Vol. 78, pp. 211-222, 2005.
    [23] R. D. McConnell and M. S. Davies, “Multijunction Photovoltaic Technologies for High Performance Concentrators,” 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May, 2006.
    [24] Y. C. Kuo, T. J. Liang, and J. F. Chen, “A High-Efficiency Single-phase Three-wire Photovoltaic Energy Conversion,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 1,pp. 116-122, Feb, 2003.
    [25] Solar Module(SP75), http://www.sp-solar.com/products.html SP Solar Co., Ltd
    [26] Dereniak and D. G. Crowe, “Photovoltaic Detection Theory,” Chap. 3 in Optical Radiation Detectors, Wiley, New York, pp. 69, 1984.
    [27] 黃哲政,近紅外光二極體頻率調變聲音通訊,國立中央大學碩士論文,民國92年。
    [28] 蔡東育,太陽能發電系統主動式孤島測技術之研究,私立中原大學碩士論文,民國96年。
    [29] 王進德與蕭大全,類神經網路與模糊控制理論入門,全華科技圖書股份有限公司,初版,1994。
    [30] A. Yazidi, F. Betin, G. Notton, and G. A. Capolino, “Low Cost Two-Axis Solar Tracker with High Precision Positioning,” First international Symposium on Environment Identities and Mediterranean Area, pp. 211-216 July 2006.

    無法下載圖示 校內:2011-08-17公開
    校外:2108-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE