簡易檢索 / 詳目顯示

研究生: 陳右儒
Chen, Yu-Ju
論文名稱: 表面聲波酒精感測器之研製
The Fabrication of Surface Acoustic Wave Alcohol Sensor
指導教授: 吳朗
Wu, Long
黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 56
中文關鍵詞: 硬酯酸酒精表面聲波
外文關鍵詞: stearic acid film, alcohol, surface acoustic wave
相關次數: 點閱:82下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出關於壓電現象、雷利波、交叉指狀電極、表面聲波,效能準則的發展以及理論。並將硬酯酸薄膜塗佈於1280YX鋰酸鈮基板,經由表面聲波之延遲線,監測其頻率漂移情形,分析此裝置對於酒精感測之特性。
    此實驗裝置在室溫下,不考慮濕度效應進行實驗,並且分析管路殘存氣體影響、電子式與浮子式流速控制器的穩定性比較、酒精通入的溫度效應影響、硬酯酸膜之老化情形、噴霧塗佈之均勻度、最佳塗佈轉速、最佳硬酯酸溶液濃度…等條件影響。
    實驗結果發現,此酒精感測裝置在使用雙重雙埠共振器架構,加上適當的環境效應控制之後,以及適當的塗佈方式,其響應具有良好靈敏度,回復性、穩定性以及重覆性,快速響應時間,且訊號/雜訊比均大於2以上。

    This thesis gives a historical account of the development, and the theory of piezoelectric phenomenon, Rayleigh wave, interdigital transducer (IDT), surface acoustic wave (SAW), performance criteria and device for application in sensor. The alcohol gas sensing properties of stearic acid film, deposited onto 1280YX-LiNbO3 substrate, have been monitored shift in frequency by SAW delay lines and analysis the properties of the alcohol gas sensor.
    The effect of humidity on SAW alcohol gas response is negligible for the typical conditions at room ambient temperature. And studied with respect to the remnant gas in tubes, the comparison of the stability between electrical and flop flow controllers, temperature effect of the flowed alcohol gas, the film aging, spray coating uniform, optimum spin parameter, optimum the concentration of stearic acid solution, and so on.
    The devices are based on the dual two ports resonator structure adds to appropriate control of the environment effect, and appropriate coating method. It is shown that the devices have good sensitivity, reversible, stability, repeatability, fast response time. And the ratio of signal to noise is greater than two.

    摘要………………………………………………………Ⅰ Abstract…………………………………………………Ⅱ 誌謝………………………………………………………Ⅲ 目錄………………………………………………………IV 表目錄……………………………………………………VII 圖目錄……………………………………………………VIII 第一章 緒論……………………………………………1 1-1 研究背景與動機………………………………………… 1 1-2 論文架構乙醇感測器………………… 3 第二章 理論……………………………………………4 2-1 壓電現象發現………………………… 5 2-1-1 壓電效應………………… 5 2-1-2 壓電元件應用…………… 6 2-2 表面聲波概論………………………… 8 2-2-1 雷利波…………………… 8 2-2-2 表面波傳遞的數學理論…10 2-3 交叉指狀轉換器………………………13 2-4 表面聲波感測器的原理……………… 17 2-4-1 聲波感測機制……………18 2-4-2 聲波感測之量測機制……19 2-4-3 質量負載效應……………19 2-4-4 化學感測膜………………21 2-4-5 靈敏度……………………22 2-5 聲波感測器之效能準則………………23 2-5-1 選擇性……………………23 2-5-2 回復性……………………24 2-5-3 靈敏度……………………24 2-5-4 動態範圍…………………25 2-5-5 穩定性,重複性,可靠性以及重置性……25 2-5-4 響應時間……………………………………26 2-5-5 環境效應……………………………………26 第三章 實驗架構與步驟……………………………………………… 28 3-1 表面聲波感測器之元件規格……………………………28 3-2 塗佈物質…………………………………………………30 3-3 試片塗佈…………………………………………………30 3-4 裝置之硬體規劃與設計…………………………………32 3-4-1 量測系統架構與HP VEE之軟體規劃………32 3-4-2 氣體管路系統之架構………………………33 3-4-3 量測之氣體容器……………………………34 3-5 量測步驟…………………………………………………35 第四章 結果與討論…………………………………………………… 37 4-1 管路殘存氣體影響………………………………………37 4-2 電子式與浮子式流速控制器的穩定性比較……………39 4-3 酒精通入的溫度效應影響………………………………40 4-4 硬酯酸膜之老化情形……………………………………41 4-5 噴霧塗佈之均勻度………………………………………44 4-6 最佳塗佈轉速條件………………………………………47 4-7 最佳硬酯酸溶液濃度……………………………………50 第五章 結論…………………………………………………………… 54 參考文獻………………………………………………………………… 55

    [1] R. M White, F. W Vlotmer, Appl. Phys. Lett, 1965, 17,314.
    [2] G. Sauerbrey, Z. Phys., 1959, 155, 206.
    [3] M. Penza, E. Milella, and V.I. Anisimkin, IEEE Trans. Ultrason.
    Ferroelect., Freq. Contr., 1998, 45, 1125.
    [4] M. Penza, E. Milella, and V.I. Anisimkin, Sens. and Actuators B 47,
    1998, 218.
    [5] M. Penza, E. Milella, M.B. Alba, G. Cassano, A. Qurini, and L.
    Vasanelli, Sens. and Actuators B 40, 1997, 205.
    [6] M. Penza, E. Milella, F, Musio, M.B. Alba, G. Cassano, and A.
    Qurini, Master, Sci. Eng. C5, 1998, 255.
    [7] P. N. Bartlett, and S. K. Ling-Chung, Sens. and Actuators B 20,
    1989, 287.
    [8] E. Milella, F. Musio, and M.B. Alba, Thin Solid Films, 1996, 284,
    908.
    [9] G. Bidan, Sens. and Actuators B 6, 1992, 45.
    [10] J. Curie and P. Curie, Bull. Soc. Min. France, 1880, 3, 90.
    [11] W. G. Hankel, Abh. Sächs, 1881, 12, 547.
    [12] W. G. Hankel, Ber. Sächs, 1881, 33, 52.
    [13] G. Lippmann, An. Chim. Phys. Ser. 5, 1881, 24, 145.
    [14] Michael Thompson, and David C.Stone, Surface-Launched Acoustic
    Wave Sensors, Wiley-Interscience, 1997.
    [15] 吳朗, 電子陶瓷-壓電, 全華科技圖書.
    [16] Bill Draft, Vice President, and General Manager, Acoustic Wave
    Technology Sensors, Microsensor Systems Inc.
    [17] Lord Kelvin, Phli. Mag., 1893, 36, 331, 342, 384, 453.
    [18] W. Voight, Abh. Götl, 1890, 36, 1.
    [19] O. Yamazaki, T. Mitsuyu and Kiyotaka, IEEE Trans. Sonic. and
    Ultranson., 1980, vol.su-27, no.6, pp369-379.
    [20] S. J. Martin, S. S. Schwartz, R. L. Gunshor and R.F. Pierret, J. Appl.
    Phys., 1983, Vol.54, No.2, pp.561-569.
    [21] Supriyo Datta, Surface Acoustic Wave Devices, Prentice-Hall,
    Englewood Cliffs, 1986.
    [22] W. R. Smith, H. M. Gerard and H. H. Collins, IEEE Trans.
    Microwave Theory and Techniques, 1969, MTT-17, pp.856-864.
    [23]G. Harsanyi, Polymer Films in Sensor Applications, Technomic
    Publishing, 1995, pp.136-149.
    [24]D. S. ballantine, R. M. White, S. J. Martin, E. T. Zellers and H.
    Wohltjen, Acoustic Wave Sensors –Theory, Design and
    physico-Chemical Applications, Academic Press, 1997.
    [25]Hank Wohltjen, Chemical Sensing With Surface Acoustic Wave (SAW)
    Devices, Microsensor Systems Inc.
    [26]G. Matsuno, D. Yamazaki, E. Ogita, K. Mikuriya, and T. Ueda, IEEE
    IMTC’94 May 10-12, Hamamatsu, 1994, pp.304-307.
    [27]洪裕杰, 石英晶體微天平用於乙醇氣體感測器之設計與量測, 國
    立成功大學碩士論文, 2000.
    [28]黃竣璞, 以胺基酸為塗層的表面聲波氨氣感測元件之研製, 義守
    大學碩士論文, 2002.
    [29]T. Moriizumi, A. Saitou and T. Nomura, IEEE Ultra. Symp., 1994,
    pp.499-502.
    [30]Jung-Myoung Kim, Hyen-Wook Kang and Young-Soo Kwon, IEEE
    Proc. of the 5th International Conference, 1997, vol.2, pp.1051-1054.
    [31]楊明昇, 表面聲波感測器特性之探討, 國立成功大學碩士論文, 2001.

    下載圖示 校內:2008-06-24公開
    校外:2013-06-24公開
    QR CODE