簡易檢索 / 詳目顯示

研究生: 王家慶
Wang, Jia-Ching
論文名稱: 具分散式相關電壓位移與多重參考電壓嵌入式比較器之類比數位轉換器
Analog-to-Digital Converters with Distributed Correlated Level Shifting and Multiple-Reference-Embedded Comparator
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 95
中文關鍵詞: 類比數位轉換器導管式逐漸趨近式類比數位轉換器逐漸趨近法分散式相關電壓位移加權平均技術環形放大器省略窗口次區間式類比數位轉換器參考電壓嵌入式比較器電容數位類比轉換器多重參考電壓嵌入式比較器
外文關鍵詞: Analog-to-digital converter (ADC), pipelined-SAR ADC, successive-approximation register (SAR), distributed averaging correlated level shifting, ring amplifier, bypass window, subranging ADC, reference-embedded comparator, capacitive digital-to-analog converter, multiple reference-embedded comparator
ORCID: 0000-0002-3393-4534
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出多項類比數位轉換器(ADC)之技術,可在提升解析度與操作速度之同時實現極低功耗之規格,並實現於高解析ADC與高速ADC。
    針對高解析規格之設計,本作以28-nm CMOS製程實現一14位元130-MS/s兩級導管式逐漸趨近式ADC,其中包含內部各級使用低功耗之逐漸趨近式(SAR)架構之sub-ADC以及一殘值放大器。針對殘值放大器,本作提出具一分散式相關電壓位移加權平均技術(DACLS)之環形放大器作為運算放大器(opamp),此放大器可大幅減少opamp之有限增益誤差,並且不會對頻寬造成衰減。此外,本作亦實現一改良式省略窗口以節省後級sub-ADC整體功耗達30%以上,並且不影響其操作特性。總和上述技術之優點可使ADC功耗大幅改善。有別於大多數高效能低功耗ADC,本作並不需搭配校正技術,因此本作在複雜度及測試成本方面極具優勢。本作ADC最高可操作於130 MS/s,功耗為0.82 mW。其最佳效能達訊號雜訊失真比(SNDR) 72.5 dB、Walden效能指標 (FoMW) 1.8 fJ/conv.-step及Schreier 效能指標 (FoMS) 181.5 dB。相較現有之中速高解析(輸入頻寬≥40 MHz與SNDR>68 dB) ADC,本作有最佳之FoMW及FoMS。
    針對高速規格之設計,本作以28-nm CMOS製程實現一8位元2.7-GS/s電容數位類比轉換器(CDAC)輔助之次區間式(Subranging) ADC。本作以CDAC實現低功耗次區間操作機制,並提出降低CDAC增益誤差及比較器反衝誤差之相應技術,以進一步提升ADC速度。為驗證該技術,本作先實現一2.5-GS/s之原型晶片,功率消耗為3.5 mW。其最佳效能之SNDR 達44.8 dB、FoMW僅為9.8 fJ/conv.-step。相較現有6~10位元之高速單通道(取樣頻率≥1.5 GHz) ADC,本作有最佳之FoMW。為了進一步降低功耗,本作另提出一多重參考電壓嵌入式比較器(MREC),該比較器除了保有典型參考電壓嵌入式比較器(REC)高速操作之特性,亦透過將數個比較器結合為單一MREC,實現比較器輸入對以及電流源共用。相較於REC,MREC可降低功耗約60%。除此之外,透過橋型CDAC設計,此晶片之輸入電容性負載可以大幅下降,提升ADC操作頻寬。最終,該晶片於2.7 GS/s下,功率消耗進一步降低至3.0 mW,並能提升SNDR之最佳效能至45.9 dB、FoMW僅為6.9 fJ/conv.-step。

    In this dissertation, several design techniques for analog-to-digital converter (ADC) are proposed so as to achieve an extremely-low power consumption benchmark while the resolution and operation speed are both improved at the same time. These design techniques are implemented and verified in high-resolution ADCs and high-speed ADCs.
    For the high-resolution design, a 14-bit 130-MS/s two-stage pipelined-SAR ADC, including low-power successive approximation register (SAR) sub-ADCs in each stage and a residue amplifier, is proposed and fabricated in 28-nm CMOS technology. For the residue amplifier, a distributed averaging correlated level shifting (DACLS) ring amplifier is proposed and used as the operational amplifier (opamp) to greatly reduce the finite opamp gain error without a degradation of bandwidth. In addition, this work employs a customized bypass-window scheme to reduce the backend sub-ADC power consumption by over 30%. Techniques mentioned above greatly reduce the ADC power consumption. This work does not require any calibration techniques and thereby reduces the testing cost and complexity. The proposed ADC can operate up to 130 MS/s with a 0.82-mW power consumption. This ADC achieves a 72.5-dB signal-to-noise and distortion ratio (SNDR), yielding a Walden (FoMW) and a Schreier (FoMS) figure-of-merits of 1.8 fJ/conv.-step and 181.5 dB, respectively. Compared with prior intermediate-speed high-resolution state-of-the-arts with (Bandwidth≥40 MHz and SNDR≥68 dB), this work achieves the best FoMW and FoMS.
    For the high-speed design, an 8-bit 2.7-GS/s capacitive digital-to-analog converter (CDAC)-assisted subranging ADC is proposed and fabricated in 28-nm CMOS technology. A low-power subranging operation is implemented by a CDAC in this work with the proposed countermeasures to reduce the CDAC gain error and the kickback error from comparators for a further speed improvement. To verify these techniques, a prototype 2.5-GS/s ADC is implemented with 3.5 mW and achieves a 44.8-dB SNDR yielding a FoMW of 9.8 fJ/conv.-step. Compared with prior 6~10-bit high-speed single-channel state-of-the-arts with (Sampling rate (FS)≥1.5 GS/s), this work achieves the best FoMW. To further reduce the power consumption, this work proposes a multiple reference-embedded comparator (MREC) which not only retains the high-speed characteristics of a typical REC but also merges several comparators as one MREC with an input pair as well as a tail current source and thereby achieves a ~60% power reduction compared to the REC. In addition, by using a bridged CDAC design, the input capacitive loading is greatly reduced and thus improve the ADC bandwidth. Under a 2.7-GS/s FS, the power consumption of this ADC is compressed to 3.0 mW with an improved SNDR equal to 45.9 dB and a FoMW of 6.9 fJ/conv.-step.

    Abstract (Chinese) I Abstract (English) III Acknowledgment V Contents VI List of Tables VIII List of Figures IX 1 Introduction 1 1.1 Motivation 1 1.2 Organization 5 2 The 14-Bit 130-MS/s Low-Power Pipelined-SAR ADC 6 2.1 Introduction 6 2.1.1 Pipelined-SAR Architecture 7 2.1.2 Finite Opamp Gain Error 9 2.2 Distributed Averaging Correlated Level Shifting (DACLS) Technique 13 2.2.1 Correlated Level Shifting (CLS) Prior Arts 13 2.2.2 Weighted Averaging Correlated Level Shifting (WACLS) Technique 18 2.2.3 DACLS Ring Amplifier 24 2.2.4 Non-Idealities of DACLS Technique 28 2.3 Latency-Reduced (LR) SAR Logic 30 2.4 Customized Bypass-Window Scheme 32 2.4.1 Characteristics of VRA 32 2.4.2 Implementation of Bypass Windows 34 2.5 Implementation of 14-Bit Pipelined-SAR ADCs 39 2.5.1 WACLS Pipelined-SAR ADC 39 2.5.2 DACLS Pipelined-SAR ADC 45 2.6 Measurement Results & Comparison 47 2.6.1 WACLS Pipelined-SAR ADC 47 2.6.2 DACLS Pipelined-SAR ADC 52 2.7 Summary 55 3 The 8-Bit 2.7-GS/s Low-Power Subranging ADC 56 3.1 Introduction 56 3.1.1 Subranging Architecture 57 3.1.2 SAR-Based Subranging ADC 59 3.1.3 Reference-Embedded Comparator (REC)-Based Subranging ADC 60 3.2 CDAC-Assisted REC-Based Subranging ADC 61 3.2.1 Characteristics of REC Design 61 3.2.2 Subranging Operation by CDAC 64 3.2.3 Implementation of 8-Bit CDAC-Assisted Subranging ADC 66 3.2.4 Reduction of CDAC Gain Error & Kickback Error 70 3.3 Multiple Reference-Embedded Comparator (MREC)-Based Subranging ADC 73 3.3.1 Design of MRECs 73 3.3.2 Implementation of 8-Bit MREC-Based Subranging ADC 78 3.4 Measurement Results & Comparison 81 3.4.1 CDAC-Assisted REC-Based Subranging ADC 81 3.4.2 CDAC-Assisted MREC-Based Subranging ADC 85 3.5 Summary 89 4 Conclusion 90 References 91

    [1] G. Van der Plas, S. Decoutere, and S. Donnay, “A 0.16pJ/conversion-step 2.5mW 1.25GS/s 4b ADC in a 90nm digital CMOS process,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 566–567.
    [2] Y.-Z. Lin, C.-H. Tsai, S.-C. Tsou, C.-H. Lu, “A 8.2-mW 10-b 1.6-GS/s 4× TI SAR ADC with fast reference charge neutralization and background timing-skew calibration in 16-nm CMOS,” in IEEE Symp. VLSI Circuit Dig. Tech. Papers, June 2016, pp. 1–2.
    [3] L. Kull et al., “A 24-to-72GS/s 8b time-interleaved SAR ADC with 2.0-to 3.3pJ/conversion and >30dB SNDR at Nyquist in 14nm CMOS FinFET”, in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 358–360.
    [4] B.-R.-S. Sung, D.-S. Jo, and I.-L. Jang, “A 21 fJ/conv-step 9 ENOB 1.6 GS/s 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 464–465.
    [5] C.-H. Chan, Y. Zhu, S.-W. Sin, S.-P. B. U, and R. P. Martins, “A 6 b 5 GS/s 4 interleaved 3 b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 365–377, Feb. 2016.
    [6] T.-C. Hung and T.-H. Kuo, “A 75.3-dB SNDR 24-MS/s ring amplifier-based pipelined ADC using averaging correlated level shifting and reference swapping for reducing errors from finite opamp gain and capacitor mismatch,” IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1425–1435, May 2019.
    [7] K. Yoshioka, R. Saito, T. Danjo, S. Tsukamoto, and H. Ishikuro, “Dynamic architecture and frequency scaling in 0.8–1.2 GS/s 7b subranging ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 932–945, Apr. 2015.
    [8] T.-C. Hung, J.-C. Wang, and T.-H. Kuo, “A calibration-free 71.7dB SNDR 100MS/s 0.7 mW weighted-averaging correlated level shifting pipelined SAR ADC with speed-enhancement scheme,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 256–257.
    [9] J.-C. Wang, T.-C. Hung, and T.-H. Kuo, “A calibration-free 14-b 0.7-mW 100-MS/s pipelined-SAR ADC using a weighted-averaging correlated level shifting technique,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3271-3280, Dec. 2020.
    [10] J.-C. Wang and T.-H. Kuo, “A 0.82mW 14b 130MS/s pipelined-SAR ADC with a distributed averaging correlated level shifting (DACLS) ringamp and bypass-window backend,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2022, pp. 162-163.
    [11] J.-C. Wang, B.-Y. Li, and T.-H. Kuo, “A 9.8-fJ/conv.-step FoMW 8b 2.5-GS/s Single-Channel CDAC-Assisted Subranging ADC with Reference-Embedded Comparators,” in IEEE Symposium on VLSI Circuits (VLSIC), June 2022, pp. 92–93.
    [12] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2901–2911, Dec. 2015.
    [13] Y. Lim and M. P. Flynn, “A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC,” in IEEE Symp. VLSI Circuit Dig. Tech. Papers, June 2017, pp. 1–2.
    [14] X. Tang, X. Yang, J. Liu, W. Shi, D. Z. Pan, and N. Sun, “A 0.4-to-40MS/s 75.7dB-SNDR fully dynamic event-driven pipelined ADC with 3-stage cascoded floating inverter amplifier,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2021, pp. 376-378.
    [15] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85 fJ/conversion-step 10b 200 kS/s subranging SAR ADC in 40 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
    [16] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2014, pp. 1–2.
    [17] W. Jiang, Y. Zhu, M. Zhang, C.-H. Chan, and R. P. Martins, “A 7.6 mW 1 GS/s 60 dB SNDR single-channel SAR-assisted pipelined ADC with temperature-compensated dynamic Gm-R-based amplifier,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 60–62.
    [18] H. Huang, H. Xu, B. Elies, and Y. Chiu, “A non-interleaved 12-b 330-MS/s pipelined-SAR ADC with PVT-stabilized dynamic amplifier achieving Sub-1-dB SNDR variation,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3235–3247, Dec. 2017.
    [19] B. R. Gregoire and U.-K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2620–2630, Dec. 2008.
    [20] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.-K. Moon, “Ring amplifiers for switched capacitor circuits,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
    [21] X. Tang, et al., “A 13.5b-ENOB second-order noise-shaping SAR with PVT-robust closed-loop dynamic amplifier,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 162-164.
    [22] C.-C. Liu, C.-H. Kuo, Y.-Z. Lin, “A 10 bit 320 MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20nm CMOS,” in IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2014.
    [23] J. P. Mathew, L. Kong, and B. Razavi, “A 12-bit 200-MS/s 3.4-mW CMOS ADC with 0.85-V supply,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2015, pp. C66–C67.
    [24] Y. Song, Y. Zhu, C.-H. Chan, and R. P. Martins, “A 2.56mW 40MHz-bandwidth 75dB-SNDR partial-interleaving SAR-assisted NS pipeline ADC with background inter-stage offset calibration,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 164-166.
    [25] T.-F. Wu and M. S.-W. Chen, “A 40MHz-BW 76.2dB/78.0dB SNDR/DR noise-shaping nonuniform sampling ADC with single phase-domain level crossing and embedded nonuniform digital signal processor in 28nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 262-264.
    [26] D.-R. Oh, K.-J. Moon, W.-M. Lim, Y.-D. Kim, E.-J. An, and S.-T. Ryu, “An 8b 1GS/s 2.55 mW SAR-flash ADC with complementary dynamic amplifiers,” in IEEE Symp. VLSI Circuit Dig. Tech. Papers, June 2020, pp. 1–2.
    [27] C.-M. Yang and T.-H. Kuo, “A 3mW 6b 4GS/s subranging ADC with adaptive offset-adjustable comparators,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2019, pp. 1–4.
    [28] K. Yoshioka, R. Saito, T. Danjo, S. Tsukamoto, and H. Ishikuro, “Dynamic architecture and frequency scaling in 0.8–1.2 GS/s 7b subranging ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 932–945, Apr. 2015.
    [29] Z. Zheng et al., “single-channel 5.5mW 3.3GS/s 6b fully dynamic pipelined ADC with post-amplification residue generation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 254-255.
    [30] C.-H. Chan, Y. Zhu, I.-M. Ho, W.-H. Zhang, S.-P. U, and R. P. Martins, “A 5 mW 7b 2.4GS/s 1-then-2b/cycle SAR ADC with background offset calibration,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 282–283.
    [31] Y. Zhu et al., “A 1.5GS/s 8b pipelined-SAR ADC with output level shifting settling technique in 14nm CMOS,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Mar. 2020, pp. 1–4.
    [32] S. Zhu, B. Wu, Y. Cai, and Y. Chiu, “A 2GS/s 8b flash ADC based on remainder number system in 65nm CMOS,” in IEEE Symp. VLSI Circuit Dig. Tech. Papers, June 2017, pp. 1–2.
    [33] L. Kull et al., “A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 474–475.

    無法下載圖示 校內:2027-09-16公開
    校外:2027-09-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE