簡易檢索 / 詳目顯示

研究生: 楊亞諭
Yang, Ya-Yu
論文名稱: 光致電化學氧化與壓印技術於氮化物發光二極體之研究
InGaN-based Light Emitting Diodes with Imprinted AC Bias-Assisted Photoelectrochemical Oxidation
指導教授: 賴韋志
Lai, Wei-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 氮化鎵光致電化學發光二極體
外文關鍵詞: light emitting diodes, GaN, photoelecyrochemical oxidation
相關次數: 點閱:52下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究將光致電化學反應(Photoelectrochemica; PEC Oxidation )與壓印(Imprint Technique)技術結合,進而應用於網狀發光二極體並提升氮化鎵發光二極體之外部量子效率。在氮化鎵表面成長出區域性的氮化鎵氧化物(GaxOy),利用其相對於氮化鎵有著較低的折射(n=1.8~1.9)以及較高的介電常數之特性,來減少內部全反射角以及增加元件出光效率。並在本論文裡針對此結構作一系列歐姆接觸特性,以及不同氧化條件下對於發光二極體之光電特性的影響之研究與探討。
    在本論文裡,利用Transmission Line Model (TLM)探討經過PEC Oxidation與熱處理之後Ni/Au 透明導電膜與半導體的接觸電特性,實驗發現在550℃得到最佳的特徵接觸電阻值(ρc),為7.85×10-2 (Ω-cm2),沒有氧化的ρc 為1.68×10-3 (Ω-cm2)。在發光二極體光電特性方面,首先比較不同氧化速率成長相同厚度(40nm)的GaxOy,在20 mA電流注入下,順向導通電壓比未氧化的LED增加約0.11 V~0.22 V,光輸出功率約為3.0~3.14 mW,增加17.2~22.7%。在網狀氧化物LEDs中發現有壓抑漏電流的現象,其原因為減少TCL Ni/Au的接觸面積,而氧化物也有效的覆蓋元表面的漏電路徑。
    實驗結果顯示,利用“PEC壓印氧化法”在LED元件表面產生特定圖形的GaxOy,電流在表面傳播時能經由網狀的TCL結構達到均勻散佈的效果。並利用折射率與表面結構的改變,減少LED元件光輸出時的內部全反射機率,以增加光取出效率。

    In this work,we developed a novel and low-cost oxidation process for growing gallium oxide on GaN in water. This process combines alternating (AC) bias-assisted photoelectrochemical (PEC) oxidation with imprint technique, which can grow and pattern gallium thin film by an ITO-coated molds. Because of the low refractive index (n=1.8-1.9) and high dielectric constant contrast to GaN, gallium oxide is suggested to reduce the internal reflection and to increase light escape from the surface of the GaN-based LEDs. Here, we performed mesh-oxide LEDs by the novel process and investigated their optoelectrical characteristics.
    The Ni-Au contact characteristic of p-type GaN with and without PEC oxidation was studied in this work. After thermal annealing in 550 OC for 5min in O2 ambient in furnace, both of the two samples have specific contact resistances of 1.68×10-3 and 7.85×10-2 Ω-cm2,respectively. In the optoelectrical characteristics of LEDs, we performed the oxide LEDs with the same oxide thickness of 40nm to study further. The forward voltage (Vf) was increased by 0.11~0.22 V in the oxide LEDs, and the light output power of LEDs at 20mA were between 3.0 mW and 3.14 mW which were 17.2%~22.7% higher than the conventional LED. The decrease of leakage current was also observed in the mesh-oxide LEDs. Because of decrease the area for Ni/Au TCL as compared to the conventional LEDs, and the oxidized region tends to effectively cover or suppress threading dislocation located at the top surface of the mesh-oxide LEDs.
    The improvement on light output power can be attributed to the PEC grown convex oxide layer with nano-rough morphology, resulting in uniform current spreading by mesh TCL. The change in the intermediate refractive index of the oxide film can reduces the total internal reflection at the GaN surface, then make light escape out of the surface of LED more efficiently.

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 背景 1 1.2 研究動機 1 第二章 實驗原理與量測系統 5 2.1 實驗原理 5 2.1.1 氮化鎵發光二極體原理 5 2.1.2 傳輸線模型理論(Transmission Line Model ; TLM) 6 2.1.3 PEC壓印氧化法原理 8 2.2 量測系統 10 2.2.1 電流-電壓量測系統 10 2.2.2 發光二極體光輸出功率(Output Power)量測系統 10 2.2.3 原子力顯微鏡(Atomic force microscopy;AFM)量測系統 11 2.2.4 掃描式電子顯微鏡(Scanning Electron Microscopy;SEM)量測系統 13 第三章 實驗製程方法與步驟 23 3.1 TLM製程 23 3.2 PEC壓印氧化法製程 26 3.2.1 製程設備 26 3.2.2 PEC壓印氧化法製程 29 3.3 PEC壓印氧化法應用在氮化鎵發光二極體製程 31 第四章 實驗結果分析與討論 36 4.1 PEC壓印氧化法在P型氮化鎵上之歐姆特性研究 36 4.1.1 鎳/金在P型氮化鎵上之歐姆特性研究 36 4.2 PEC壓印氧化法應用在氮化鎵發光二極體光電特性研究 37 4.2.1 氧化速率在氮化鎵發光二極體特性研究 37 4.2.2 氧化層厚度在氮化鎵發光二極體特性研究 41 第五章 結論與未來展望 73 5.1 結論 73 5.2 未來展望 75 參考文獻 77 表目錄 表3-1 LED元件製程流程圖 32 表4-1 Ni/Au在P-GaN上,Anneal不同溫度熱處理5分鐘之特徵接觸值 47 表4-2 PEC壓印氧化條件表 47 表4-3 LEDA~LEDE的串聯電阻 48 表4-4 LEDA~LEDE光電特性綜合比較表 48 表4-5 相同氧化條件下不同厚度的LEDs串聯電阻 49 表4-6 相同氧化條件下不同厚度的LEDs光電特性綜合表 49 表4-7 相同氧化條件下不同厚度的LEDs串聯電阻 50 表4-8 相同氧化條件下不同厚度的LEDs光電特性綜合表 50 表4-9 Conventional LED 和Oxidation LED之發光二極體二維光強度影像分佈比較圖 51 圖目錄 圖1-1 GaN, InN, and AlN三種化合物對色之圖 4 圖2-1 P-N 接面在熱平衡時之能帶圖 16 圖2-2 P-N 接面在順向偏壓下載子流動示意圖 16 圖2-3 氮化鎵與氮化銦鎵之多重量子井結構 17 圖2-4 TLM樣品示意圖 17 圖2-5 電阻質對應間距L之曲線圖 18 圖2-6 傳統PEC 氧化法實驗架構示意圖 18 圖2-7 電壓印一般架構示意圖 19 圖2-8 為氮化鎵在與液體接觸後的固-液相平衡能帶-空間關係示意圖 19 圖2-9 發光二極體光輸出功率量測儀器示意圖 20 圖2-10 原子力顯微鏡掃描模式 20 圖2-11 原子力顯微鏡的基本構造 21 圖2-12 原子力顯微鏡探針 21 圖2-13 掃描式電子顯微鏡基本構造圖 22 圖3-1 紫外光固化式奈米壓印機構造示意圖 33 圖3-2 ITO在雙面拋光sapphire上的穿透率 33 圖3-3 TLM曝光顯影後的光阻定義圖示 34 圖3-4 LED曝光顯影後的光阻定義圖示 34 圖3-4 PEC壓印氧化反應示意圖 35 圖3-5 脈衝電壓週期示意圖 35 圖4-1 Ni/Au在P-GaN上Conventional TLM,熱處理(550℃)5分鐘後電流-電壓特性曲線圖 52 圖4-2 Ni/Au在P-GaN上Oxidation TLM,熱處理(550℃)5分鐘後電流-電壓特性曲線 52 圖4-3 Ni/Au不同熱處理溫度下的穿透率 53 圖4-4 氧化線寬SEM圖 53 圖4-5 Ni/Au在不同溫度熱處理下,TLM間距5um的電流-電壓特性曲線比較圖 54 圖4-6 LED表面OM圖以及SEM圖,和EDS分析圖 55 圖4-7 LED表面SEM圖 56 圖4-8 光取出路徑圖 56 圖4-9 LED (A)OM圖 (B)Oxidation LED SEM圖 57 圖4-10 LEDA~LEDE的電流-電壓特性曲線圖 58 圖4-11 LEDA~LEDE的負偏壓操作下電流-電壓特性曲線圖 58 圖4-12 LEDA~LEDE的發光二極體光輸出功率-電流特性以及外部量子效率-電流特性曲線圖 59 圖4-13 AFM圖(A) LED A (B)LED B (C)LED C (D)LED D (E) LED E 60 圖4-14 不同偏壓下PEC所產生的Ga2O3表面SEM圖 61 圖4-15 LEDA~LEDE的波長-電流特性曲線圖 62 圖4-16 LEDA~LEDE在20 mA之電激發光光譜圖 62 圖4-17 相同氧化條件下不同厚度的LEDs電流-電壓特性曲線圖 63 圖4-18 相同氧化條件下不同厚度的LEDs光輸出功率-電流特性以及外部量子效率-電流特性曲線圖 63 圖4-19 相同氧化條件下不同厚度的LEDs負偏壓操作下電流-電壓特性 64 圖4-20 相同氧化條件下不同厚度的LEDs電流-電壓特性曲線圖 64 圖4-21 相同氧化條件下不同厚度的LEDs光輸出功率-電流特性以及外部量子效率-電流特性 65 圖4-22 AFM圖(A) LED A (B)LED F (C)LED G (D)LED B 66 圖4-23 AFM圖(A) LED A (B)LED H (C)LED D (D)LED I 67 圖4-24 相同氧化條件下不同厚度的LEDs負偏壓操作下電流-電壓特性曲線圖 68 圖4-25 相同氧化條件下不同厚度的LEDs波長-電流特性曲線圖 68 圖4-26 相同氧化條件下不同厚度的LEDs波長-電流特性曲線圖 69 圖4-27 相同氧化條件下不同厚度的LEDs在20 mA之電激發光光譜69 圖4-28 相同氧化條件下不同厚度的LEDs在20 mA之電激發光光譜70 圖4-29 光線在介面處所產生之反射及折射現象示意圖 70 圖4-30 Light Escape Cone 之示意圖 71 圖4-31 LED 出光比較示意圖 71 圖4-32 LED表面GaxOy示意圖 72

    [1] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, J. Appl. Phys., vol. 76, p. 1363 (1994).
    [2] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, Solid-Sta Electron,vol. 41, p.177 (1997).
    [3] S. Nakamura, M. Senoh, S. Nagahama, N.Iwasa, Appl. Phys. Lett., vol. 72, p. 2014 (1998).
    [4] M. Razeghi, and A. Rogalski, J. Appl. Phys., vol. 79, p.7433 (1996).
    [5] S. J. Pearton, J. C. Zolper, R. J. Shul, and FRen, J. Appl. Phys., vol. 86,p.1 (1999).
    [6] E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
    [7] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl.Phys., Part 1 38, 3976 (1999).
    [8] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Appl.Phys. Lett.,vol. 75, p.196 (1999).
    [9] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars,and S. Nak-amura, Appl. Phys. Lett.,vol. 84,p.85(2004).
    [10] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, J. App.Phys, vol. 93, p. 9383 (2003).
    [11] http://www.cree.com/ftp/pub/CPR3CM.pdf, High Power Blue LED chips (SiC substrate) have a geometrically enhanced Epi-down design to maximize light extraction efficiency,and require only a single wire bond connection.
    [12] J.J.Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea,M.J.Ludowise, Appl.Phys.Lett.,vol.78,p.337(2001).
    [13] M. Koike, N. Koide, S. Asami, J. Umezaki,in Proc.SPIE Internat-ional Society for Optical-Engineering,vol.3002, pp.36–39 (1997).
    [14] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P.DenBaars, Appl. Phys. Lett. 84, 855 (2004).
    [15] C. Huh, K. S. Lee, E. J. Kang,J. Appl. Phys. 93, 9383 (2003).
    [16] M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J.Zydzik, M. Hong, J. P.Mannaerts, R. L. Opila, and R.J.
    Fischer, Appl. Phys.Lett. .Vol.64, pp.2715 (1994).
    [17] M. Rebien and W. Henrion, Appl. Phys. Lett., vol.81, pp.250 (2002).
    [18] Myungil Kanga, Jong-Soo Leea, Sung-Kyu Sima, Byungdon Mina, Thin Solid Films, vol.466, pp. 265–271 (2004).
    [19] Bo Yang and Patrick Fay,American Vacuum Society,vol.22, pp.1750 (2004).
    [20] T. Wolff, M. Rapp, IEEE, pp.230 (2004).
    [21] Bo Yang and Patrick Fay, American Vacuum Society,vol.24, pp.1337 (2006).
    [22] Nanako SHIOZAKI, Taketomo SATO, and Tamotsu HASHIZUME,Japanese Journal of pplied Physics, Vol.46, pp.1471~1473(2007).
    [23] L.-H.Peng,C.-H.Liao,Y.-C.Hsu,Appl.Phys.Lett.,Vol,76,pp.511(2000).
    [24] 葉俊逸,“交流電輔助N型氮化鎵光電化學反應氧化圖形壓印之研究”,國立成功大學光電科學與工程研究所,碩士論文(2008).
    [25] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang,and Kwang-Kuo Shih J.Appl.Phys.VOl,86,pp.4491(1999).
    [26] Shun-Cheng Hsu, Chong-Yi Lee, Jung-Min Hwang, Juh-Yuh Su, Dong-Sing Wuu, and Ray-Hua Horng, IEEE, VOL.18,NO. 23, P2472~2474 (2001)
    [27] N. Linder, S. Kugler, P. Stauss, K. P. Streubel, R. Wirth, and H. Zull, in Proc. SPIE, vol. 4278, 2001, pp.19–25(2001).
    [28] HWHuang1,2, C H Lin2, C C Yu2, B D Lee2, C H Chiu1, C F Lai1,HCKuo1, Semicond. Sci. Technol.23(2008).
    [29] Hung-Wen Huang,Chih-Chiang Kao,Jung-Tang Chu,Wei-Chih Wang,Tien-Chang Lu,Hao-Chung Kuo,Shing-Chung Wang,Chang-Chin Yuand Shou-Yi Kuo,Materials Science and Engineering B 136,182–186(2007).
    [30] M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M.Fleischer,Appl.Phys. Lett. 81,250 (2002).
    [31] E. Fred Schubert,, Light-Emitting diodes, second edition ,p.92,p.133~p138
    [32] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P.DenBaars, and S.NakamuraAPPLIED PHYSICS LETTERS,VOLUME 84,NUMBER 6(2004).

    下載圖示 校內:2011-07-29公開
    校外:2012-07-29公開
    QR CODE