| 研究生: |
陳宗傑 Chen, Zong-Jie |
|---|---|
| 論文名稱: |
以雙氣體霧化法及熱壓擠型製程製作Mg-Cu-Gd原位金屬玻璃複合塊材並對其性質之研究 Study of the Properties of the Mg-Cu-Gd In Situ Bulk Metallic Glass Composite Synthesized by Rapid-Solidifying Atomization and Consolidated by Hot Pressing and Indirect Extrusion |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 雙氣體霧化法 、鎂基金屬玻璃複合材 、奈米晶 、應力與應變誘發結晶 |
| 外文關鍵詞: | Rapid-Solidifying Atomization, Mg-based BMGC, Nanocrystal, Stress-induced Crystallization |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂基非晶質合金擁有良好的玻璃形成能力,且具有低冷卻速率形成非晶態的特性,而本研究經由雙氣體霧化法製備出鎂銅釓金屬玻璃的非晶質粉末,已可達到89%的產率,由感應耦合電漿質譜儀(ICP)鑑定成分均勻,確定其組成為Mg67.4Cu23.3Gd9.4,且X光繞射分析(XRD)檢測為完全非晶,而示差掃描量熱法(DSC)分析熱性質,得知材料的玻璃轉換溫度、結晶溫度以及孕核時間,並計算Trg及γ等參數,評估此金屬玻璃的玻璃形成能力(GFA)。
將氣體霧化製程得到的Mg67.4Cu23.3Gd9.4非晶質金屬玻璃粉末,進行熱壓及擠型製程,製備金屬玻璃複合材(BMGC),探討其受不同擠型參數下,應力與應變誘發結晶對機械性質的影響,而由穿透式電子顯微鏡(TEM)及X光繞射分析(XRD)檢測得知,應力與應變誘發結晶之奈米晶為介穩態的Mg2Cu相。
SUMMARY
Mg-Cu-Gd metallic glass powders were synthesized by Rapid-Solidifying Atomization (RSA). The RSAed powder was fully amorphous shown by X-Ray Diffractometry (XRD), and the glass transition temperature (Tg), crystallization temperature (Tx) and incubation time were determined by Differential Scanning Calorimeter (DSC). The value of Trg and γwere criterion with the glass forming ability (GFA) of Mg-based metallic glass. The Mg-Cu-Gd in situ bulk metallic glass composite (BMGC) consolidated by backward extrusion. The microstructure of the stress-induced nano-crystalline/amorphous composites was studied by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), and the crystalline phases of the Mg-rich nanocrystals were shown metastable Mg2Cu phase by XRD.
Key word: Rapid-Solidifying Atomization, Mg-based BMGC, Nanocrystal, Stress-induced Crystallization
參考文獻
1. Young, K. and K. Jin, Synthesis and characterization of bulk metallic glasses, composites and hybrid porous structures by powder metallurgy of metallic glassy powders. 2015.
2. Inoue, A., T. Zhang, and T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
3. Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.
4. Chang, Y.C., et al., Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy. Intermetallics, 2007. 15(10): p. 1303-1308.
5. Salimon, A.I., et al., Bulk metallic glasses: what are they good for? Materials Science and Engineering A, 2004. 375-377: p. 385-388.
6. Ashby, M.F. and A.L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
7. Zheng, Q., J. Xu, and E. Ma, High glass-forming ability correlated with fragility of Mg--Cu(Ag)--Gd alloys. Journal of Applied Physics, 2007. 102(11): p. 113519-5.
8. Xu, Y.-K., et al., Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia, 2005. 53(6): p. 1857-1866.
9. 陳海明, 鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質. 2006國立中山大學材料科學研究所碩士論文.
10. Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
11. Chang, L.J., et al., Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x??-10) amorphous alloys. Journal of Alloys and Compounds, 2007. 434-435: p. 221-224.
12. Inoue., A., et al., Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
13. Xi, X.K., et al., On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005. 13(6): p. 638-641.
14. Yuan, G. and A. Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds, 2005. 387(1-2): p. 134-138.
15. Soubeyroux, J.L., et al., Synthesis and mechanical behavior of nanocomposite Mg-based bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434-435: p. 84-87.
16. Zheng, Q., et al., Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Materialia, 2007. 56(2): p. 161-164.
17. Akihisa Inoue, Tao Zhang, and T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region Materials Transactions, JIM, 1989. 30(12): p. 965-972.
18. Hufnagel, T.C., et al., Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. Materials Research Society, 2002. 17(6).
19. Bletry, M., et al., Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Materialia, 2006. 54(5): p. 1257-1263.
20. Hui, X., et al., High-zirconium-based bulk metallic glasses with large plasticity. Scripta Materialia, 2010. 63(2): p. 239-242.
21. Huang, Y.J., et al., Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009. 17(4): p. 190-194.
22. Keryvin, V., V.H. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
23. Akihisa Inoue, N. Nishiyama, and T. Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): p. 181-184.
24. Schwarz, R.B. and Y. He, Bulk Metallic Glass Formation in the Pd-Ni-P and Pd-Cu-P Alloy Systems. 1997: p. pp 287-299.
25. Men, H., W.T. Kim, and D.H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x=0, 5 and 10) alloys. Journal of Non-Crystalline Solids, 2004. 337(1): p. 29-35.
26. Angell, C.A., Formation of Glasses from Liquids and Biopolymers. Science, 1995. 267(5206): p. 1924-1935.
27. Du, X.H., et al., New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
28. Tanaka, H., Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal of Non-Crystalline Solids, 2005. 351(8-9): p. 678-690.
29. Lu, Z.P. and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
30. Ted Guo, M.L., et al., Crystallization behavior of spray-formed and melt-spun Al89La6Ni5 hybrid composites with amorphous and nanostructured phases. Materials Science and Engineering: A, 2005. 404(1-2): p. 49-56.
31. Matusita, K. and S. Sakka, Kinetic study of crystallization of glass by differential thermal analysis--criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980. 38-39(Part 2): p. 741-746.
32. Kissinger, H.E., Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957. 29: p. 1702-1706.
33. Katayun, B., A Commentary on: ``Reaction Kinetics in Processes of Nucleation and Growth'*. Metallurgical and Materials Transactions A, 2010. 41(11): p. pp.2711-2775.
34. Avrami, M., Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys., 1941. 9(2): p. 177-184.
35. Argon, A.S., PLASTIC-DEFORMATION IN METALLIC GLASSES. Acta Metallurgica, 1979. 27(1): p. 47-58.
36. Wang, W.H., Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. JOURNAL OF APPLIED PHYSICS 2011. 110(5): p. 053521-053521-15.
37. Heggen, M., F. Spaepen, and M. Feuerbacher, Creation and annihilation of free volume during homogeneous flow of a metallic glass. JOURNAL OF APPLIED PHYSICS, 2005. 97(3): p. 033506-033506-8.
38. Wang, W.H., The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012. 57: p. 487-656.
39. Trexler, M.M. and N.N. Thadhani, Mechanical properties of bulk metallic glasses. Progress in Materials Science, 2010. 55: p. 759–839.
40. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
41. Prasad, Y., et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical and Materials Transactions A, 1984. 15(10): p. 1883-1892.
42. Hajlaoui, K., et al., Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Materialia, 2006. 54(11): p. 1829-1834.
43. Shao, H., et al., Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. Journal of Solid State Chemistry, 2005. 178(7): p. 2211-2217.
44. Wolff, U., N. Pryds, and J.A., Deformation characteristics of Mg60Cu30Y10 alloy at temp. near Tg. Wert Scripta Materialia 2004. 50: p. 1385-1388.
45. Shao, H., et al., Preparation and Hydrogen Storage Properties of nanostructures mg2Cu alloy. Journal of Solid State Chemistry, 2005. 178(7): p. 2211-2217.
46. Chang, K.F., et al., Mg-Cu-Gd layered composite plate synthesized via the spray forming process. Materials Science and Engineering: A, 2008. 477(1-2): p. 58-62.
47. Chen, F.H., et al., Microstructures and mechanical behaviors of Mg58Cu31Gd11 and Mg65Cu25Gd10 amorphous alloys synthesized by injection casting and melt spinning. Journal of Alloys and Compounds, 2009. 483(1-2): p. 32-36.
48. Xinga, L.Q., et al., Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. 1998. 241(1-2): p. 216-225.
49. Koch, C., ed. Nanostructured Materials: Processing, Properties and Applications. 2002.
50. Kim, Y.C., Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. APPLIED PHYSICS LETTERS, 2003. 83.
51. Zhang, Y., et al., Effect of Microstructure Changes on Mechanical Properties of La66Al14(Cu, Ni)20 Amorphous and Crystalline Alloys. 2004. 12.
52. Dubach, A., Inhomogeneous deformation of Zr-based bulk metallic glasses. 2009.
53. 吳學陞, 工業材料, 1999. 149: p. 154-165.
54. 陳賀振 and 黃永茂博士, CPU散熱片擠製之模具設計及有限元素分析. 2002, 國立中山大學.