簡易檢索 / 詳目顯示

研究生: 李承祐
Lee, Cheng-You
論文名稱: 適用於非均勻氣體溫度分佈的聲速演算法之開發與驗證
Sound speed estimation of environment with non-uniform gas temperature distribution
指導教授: 黃致憲
Huang, Chih-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 51
中文關鍵詞: 訊號分析聲速計算施密特觸發器非均勻溫度分佈
外文關鍵詞: Schmitt-trigger, sound speed estimation, time-of-flight, non-uniform gas temperature distribution, signal processing
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波聲速藉由一端傳感器發射超音波再由另一端傳感器接收聲波,計算從發射聲波的時間點到接收聲波的時間點得知飛行時間(Time-of-Flight,以下簡稱TOF),並利用已知的距離與TOF推估可得到聲波在該介質中的傳遞速率。超音波需要透過介質來傳遞,然而在空氣中,聲速可能被環境因素如溫度、濕度、大氣壓力所影響,導致推算平均聲速結果誤差大。現今已經有的聲速判斷方法如脈衝最大值以及訊號調變包絡方波法,經TOF分析過後得知聲速,但並未考量溫度不均勻的情況下,聲波會因為聲阻抗之不同產生的反射和折射使波形偏移,讓TOF產生誤差,導致聲速推算錯誤。為了提高聲速估計的空間分辨率,如何在不受真實環境影響下提高聲速計算的準確性正是需要克服的難題。
    在真實環境中,聲波傳遞過程中可能因為衰減、反射以及回波干擾等因素,導致聲速判斷不準確,因此在本研究透過演算法以及實驗架構的改善增加聲速判斷準確性。在實驗架構中,利用架設12個超音波傳感器形成一個圓形區域,對於圓中心而言,每間隔30°就放置一個傳感器,彼此間距離相等且互相皆可當作發射器與接收器,並且在四周圍都放上吸音棉用以降低回波反射影響主訊號。在量測路徑不同時,可以藉由演算法得到訊號到達的接收器的時間點來進行TOF的計算,然後推算各路徑上的聲速。
    本研究透過超音波傳感器發射與接收的訊號進行分析,找出在非均勻氣體溫度分佈下的能夠正確判斷聲速的方法。根據系統得到之聲波訊號,不受聲波傳遞經過溫度分佈不同的區域產生的反射與折射所造成之干涉的影響,正確計算出該路徑之聲速。當接收器收到聲波訊號,此時訊號就會產生脈衝波形,利用雜訊強度的大小以及Schmitt-trigger的概念並加入判斷式,使訊號分析在各路徑上的接收訊號中得到主訊號接收時間點,使聲速計算更加準確且適用於溫度分佈不均勻的氣體中量測。

    In real-world industrial application, knowledge of temperature field distribution plays an important role. Acoustic tomography (AT) offers advantages like non-contact to measure and visualize the temperature distribution. AT technique reconstructs the temperature distribution from the sound speeds of multiple paths between transmitting transducers (Tx) and receiving transducers (Rx). In maximum peak method, a signal is transmitted from Tx to Rx, and the time-of-flight (TOF) between the transmitted signal and received signal is calculated by the time difference between the maximum peak value of the transmitted signal and the received signal. Next, the TOF and the known distance between the Tx and Rx are used to estimate the sound speed in the medium. However, when the ultrasound wave travel through the non-uniform temperature medium, the TOF estimation using the maximum peak method is inconsistent.
    Therefore, the aim of this research is to find an appropriate method to estimate the sound speed under the non-uniform gas temperature distribution of continuous heating by measuring and analyzing the signals. In the proposed sound speed method, the TOF is calculated using the concept of Schmitt-trigger along with two additional judgements. The proposed method is compared against the maximum peak method. The temperature data measured by 37 thermocouples are used to reconstruct the temperature distribution, and the sound speed data of each path in the temperature distribution map is used to verify the sound speed obtained by the proposed method. The sound speed results show that when the heat source is turned off, the sound speed calculated by the proposed method is similar to the sound speed of each path from reconstructed temperature distribution, while the standard deviation of the sound speed can reach within ±4m/s in the heating state, which verifies the stability of the sound speed acquired by the proposed algorithm about estimating sound speed.

    摘要 I 致謝 XVI 圖目錄 XIX 表目錄 XXII 符號表 XXIII 第一章 緒論 1 第二章 相關研究 3 2.1 超音波聲速計算之原理 3 2.2 相關文獻探討 5 2.3 非均勻溫度場對聲波傳遞的影響 10 第三章 研究方法 11 3.1 聲波傳遞分析 12 3.2 聲波到達時間判斷方法 15 3.2.1 聲波資料的擷取 16 3.2.2 轉折點抓取之算法 16 3.2.3 演算法後優化判斷式的建立 18 3.2.4 評估倍率因子(K值)之數值 22 3.3 聲波傳感器與熱電偶量測實際實驗架構 23 3.3.1 超音波傳感器之實驗架構 23 3.3.2 熱電偶之實驗架構 25 3.3.3 超音波傳感器與熱電偶系統之整合 28 3.4 訊號振幅最大值方法之聲速量測 29 第四章 實驗結果 30 4.1 模擬聲波傳遞之聲速結果 30 4.2 振幅最大值法之實際實驗結果 32 4.3 聲速判斷演算法實作結果 33 4.3.1 倍率因子(K值)之評估結果 33 4.3.2 聲波訊號分析結果 37 4.3.3 超音波飛行時間(TOF)計算結果 39 4.4 實際實驗聲速計算結果 39 4.4.1 聲速判斷演算法之計算結果 39 4.4.2 振幅最大值方法與聲速判斷演算法之比較 41 4.4.3 超音波聲速計算之驗證 42 第五章 結論 47 參考文獻 48

    [1] Y Bong and J Jia, “Improved time-of-flight estimation method for acoustic tomography system”, IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 4, pp 974 –984, April 2020.
    [2] M Barth and A Raabe, “Acoustic tomographic imaging of temperature and flow fields in air”, Measurement Science and Technology, Vol. 22, No. 3, pp 035102, January 2011.
    [3] P Holstein, A Raabe, R Muller, M Barth, D Mackenzie, and E Starke, “Acoustic tomography on the basis of travel-time measurement”, Measurement Science and Technology, Vol. 15, No. 7, pp 1420 – 1428, June 2004.
    [4] J A Jensen, O Holm, L J Jerisen, H Bendsen, S I Nikolov, B G Tomov, P Munk, M Hansen, K Salomonsen, J Hansen, K Gormsen, H M Pedersen, and K L Gammelmark, “Ultrasound research scanner for real-time synthetic apearture data acquistion”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 52, No. 5, pp 881 – 891, May
    2005.
    [5] P Tortoli, L Bassi, E Boni, A Dallai, F Guidi, and S Ricci,“ULA-OP: an advanced open platform for ultrasound research”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 56, No. 10, pp 2207 – 2216, May 2005.
    [6] R E Daigle, “Ultrasound imaging system with pixel oriented processing”, U.S. Patent 8 287 456, October 16, 2012.
    [7] https://en.wikipedia.org/wiki/Acoustic_impedance
    [8] http://www.sengpielaudio.com/TemperatureSound.htm
    [9] https://pages.mtu.edu/~suits/SpeedofSound.html.
    [10] Y. Dain and R. M. Lueptowa, “Acoustic attenuation in a three-gas mixture: Results,” J. Acoust. Soc. Am. Vol. (6), p. ,2974-2979, 2001
    [11] L Jia, X Xue, S Chen, H Wu, X Yang, J Zhai, and Z Zeng, “A high-resoultion ultrasonic ranging system using laser sensing and a cross-correlation method”, Applied Sciences, Vol. 9, 1483, April 2019.
    [12] B Barshan, “Fast processing techniques for accurate ultrasonics range measurements”, Measurement Science and Technology, Vol. 11, No. 1, pp 45 – 50. January 2000.
    [13] N Taniguchi, C F Huang, A Kaneko, C T Liu, B H Howe, Y H Wang, Y Wang, Y Yang, J Lin, X H Zhu, and N Gohda,“Measuring the Kuroshio current with ocean acoustic tomography”, The Journal of the Acoustical Society of America, Vol. 134, No. 4, pp 3272 – 3281. October 2013.
    [14] C Li, N Duric, P Littrup, and L Huang, “In vivo breast soundspeed imaging with ultrasound tomography”, Ultrasound in Medicine and Biology, Vol. 35, No. 10, pp 1615 – 1628, October 2009.
    [15] Karen Sinclair Molek, Karl A. Reyes, Brandon A. Burnette, and Jacob R. Stepherson, “Measuring the speed of sound through gases using Nitrocellulose”, Journal of Chemical Education, Vol. 92, No. 4, pp 762 – 766, April 2015.
    [16] Y. S. Huang, Y. P. Huang, K. N. Huang, and M. S. Young, “An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique”, Review of Scientific Instruments,Vol. 78, No. 11, December 2007.
    [17] http://wshnt.kuas.edu.tw/network/s2/index6.htm
    [18] https://www.elprocus.com/what-is-phase-modulation-advantages-disadvantages-and-applications/
    [19] S. Hirata and H. Hachiya, "Study About Non-Contact Measurement of the Speed of Sound in a Parallel-Sides Tissue Using Pass-Through Airborne Ultrasound," 2018 IEEE International Ultrasonics Symposium (IUS), 2018, pp. 1-4, doi: 10.1109/ULTSYM.2018.8579905.
    [20] https://en.wikipedia.org/wiki/Autocorrelation.
    [21] L. Mažeika, L. Draudvilienė, “Analysis of the zero-crossing technique in relation to measurements of phase velocities of Lamb waves”, ULTRAGARSAS (ULTRASOUND),Vol. 65, No. 3, November 2010.

    無法下載圖示 校內:2026-10-27公開
    校外:2026-10-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE