簡易檢索 / 詳目顯示

研究生: 廖建能
Liao, Chien-Neng
論文名稱: 「隔間水槽阻尼器」調控參數對結構減振之效應
Effects of PTD Tuning Factors On the Suppression of Structural Vibration
指導教授: 丁舜臣
Ting, Shuenn-Chern
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 阻尼器減振
外文關鍵詞: suppression, damper
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隔間水槽阻尼器(Partitioned Tank Damper, PTD)是一種水槽中間設置垂直隔板的調諧液體阻尼器(Tuned Liquid Damper, TLD)。垂直隔間版可以上下移動,移至最低點時為全閉,PTD成為兩個獨立之水槽,最高點時為全開,PTD為無隔間之單一水槽。配置與不配置PTD結構系統受到地震作用時,兩者的結構物振幅比率若遠小於1,則有明顯減振效應。本文探討PTD的兩個調諧因子對結構減振之效應:調諧因子之一為PTD的儲水量以「水深」表之;之二為PTD隔間版的開口位置,以「開度」表之。
    在PTD兩水槽水面上各放置浮板;使用時,水體在兩槽間流動,經觀察液面的運動使兩浮板呈反對稱,可以簡化成兩個自由度:其一為浮板的昇高量,其二為浮板的斜度。另加上結構體的一個自由度,整個動力系統合計是三個自由度的運動,且是非線性。
    本研究分析以實驗量測配合流場模擬,來求取運動方程式中,唯一無法量取的系統阻尼率。實驗時,使用雷射位移計擷取結構物的位移歷時曲線,以電荷藕合元件(Charge Coupled Device, CCD)攝影機讀取PTD內浮板的昇高量與坡度。「單獨PTD」及「結構體附加PTD的組合」系統,兩種分別執行試驗。以震動台驅動兩系統的振動方式分為:步階位移運動及簡諧運動,共計95組試驗案例。PTD內之流場可使用有限解析法配合瞬時貼壁座標計算分析,而得到PTD壁面液體的壓力分佈。假設此結果可應用於組合系統,以試誤法配合其他擷取的條件,調整系統阻尼,使位移反應與實測者相近求得阻尼率。同時根據位移歷時,以時頻域轉換(Joint Time-Frequency Analysis, JTFA)得動力系統之主頻、次頻,依迴歸公式亦可求得阻尼率。
    分析結果顯示,開度比值越大時,其減振效果越好,但開度續增時由於隔間水槽近似於單一水槽,減振效果會遽減。在水槽中間放置隔間版,可以有效增加內部阻尼值。

    Partitioned Tank Damper (PTD) is a kind of Tuned Liquid Damper (TLD) with a partition placed in the tank. When a structure, either equipped with or without a PTD, vibrates under earthquake loadings, the suppression effect is significant if the amplitude ratio of structural vibrations under those two arrangement types is far less than one. The aim of this study is to investigate the effects of two PTD tuning factors on the suppression of structural vibrations. One of the factors is the water stored in the PTD in terms of water depth. The other is the location of the partition in PTD in terms of opening. As the location is vertically adjustable, there are two chambers with the opening full close and the partition down the most, and there is only a tank of single chamber with the opening full open and the partition up the most.
    Observation shows that the motion of fluid inside PTD, with floating plates on the water surface, is anti-symmetrical to the partition. The motion of fluid may be simplified to have two degrees of freedom. One is the averaged water surface elevation, measured above the still water level, in one chamber, and the other is the water surface inclination. In addition, the motion of the structure has one degree of freedom. In summary, the motion equation for the system of structure plus PTD is nonlinear, and has three degrees of freedom.
    Main efforts are concentrated on the testing part of study. Laser displacement sensors were utilized to measure the motion of the structure. Pictures taken by Charge Coupled Device (CCD) camera were analyzed to trace the water surface elevation and inclination in PTD. The system damping is the only variable left in the motion equation unmeasured, however, which can be analyzed numerically.
    A model of single PTD itself as well as a model of the same PTD fixed on a portal frame was prepared for the experiments, while harmonic motions and step shifts were the two types of excitations generated by the shaking table. 95 experimental run cases were conducted for the combination of various water depths and partition openings, to examine the suppression effects. Numerical analyses of fluid motion in a single PTD itself were performed, using finite-analytic method and transient boundary-fitted grid system, to evaluate the water force acting on the structure system. Assuming the water force of fluid motion may be also applied to the structural system of PTD mounting on a portal frame. Finally, the suppression effects in terms of damping ratios were revealed using trial and error procedures. The application of Joint Time-Frequency Analysis (JTFA) techniques on the time history data collected from the motion of structural system had evaluated the main frequency and the secondary frequency. Furthermore, damping ratios were also estimated from the corresponding regression formula.
    The result shows that the greater the opening ratio the larger the suppression of vibrations. However, as the opening ratio is larger enough, the suppression effects drop down because the two chambers of PTD have become a single one. The partition placed in the PTD has been proved to be an effective method to increase the system damping.

    目  錄 中文摘要.........................................i 英文摘要........................................ii 表目錄...........................................v 圖目錄..........................................vi 照片目錄......................................viii 符號說明........................................ix 第一章 緒 論...................................1     1-1 研究動機............................1     1-2 文獻回顧............................1     1-3 研究方法............................3     1-4 本文組織............................3 第二章 理論分析.................................5     2-1 結構振動基本理論....................5     2-2 PTD液體運動基本理論.................6       2-2-1 運動方程式....................7       2-2-2 初始條件......................9       2-2-3 邊界條件......................9 第三章 試驗研究................................12     3-1 試驗模型...........................12       3-1-1 門型框架模型.................12       3-1-2 隔間水槽阻尼器模型...........13     3-2 儀器設備...........................14       3-2-1 震動台系統...................14       3-2-2 擷取資料儀器系統.............16       3-2-3 儀器之率定...................17     3-3 資料擷取與分析.....................18       3-3-1 資料擷取.....................18       3-3-2 資料分析.....................21     3-4 振動試驗...........................22       3-4-1 試驗條件.....................23       3-4-2 步階位移運動試驗.............23       3-4-3 簡諧運動試驗.................24 第四章 數值分析................................26     4-1 數值計算方法.......................26      4-1-1 線性加速度法...................27      4-1-2 Runge-Kutta法..................28      4-1-3 數值方法的驗証.................28     4-2 流場模式...........................29     4-3 計算流程...........................31 第五章 結果與討論..............................33     5-1 隔間水槽阻尼器.....................33      5-1-1 液面振盪頻率分析及討論.........33      5-1-2 液面振盪阻尼率.................34     5-2 結構系統步階位移運動...............34       5-2-1 液面振盪振幅之歷時模擬.......35       5-2-2 時頻率分析...................36     5-3 結構系統簡諧運動...................36     5-4 數值與試驗比較.....................37 第六章 結論與建議..............................39     6-1 結論...............................39     6-2 建議...............................40 參考文獻........................................41 附錄............................................77

    Balendra, T., Wang, C.M., and Yan, N., (2001) “Control of wind-excited towers by active tuned liquid column,” Engineering Structures, vol. 23, pp.1054–1067.
    Chang, C.C., (1999) “Mass dampers and their optimal designs for building vibration control,” Engineering Structures, vol. 21, Issue: 5, pp. 454-463.
    Chang, C.C., and Gu, M., (1999) “Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 83, pp. 225-237.
    Fediw, A.A., Isyumov, N., and Vickery, B.J., (1995) “Performance of a tuned sloshing water damper,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 57, pp. 237-247.
    Gardarsoon, S., Yeh, H., and Reed, D., (2001) “Behavior of Sloped-Bottom Tuned Liquid Dampers,” J. Eng. Mech. ASCE 127, pp. 266-271.
    Koh, C.G., Mahatma, S., and Wang, C.M., (1995) “Reduction of structural vibrations by multiple-mode liquid dampers,” Engineering Structures, vol. 17, Issue: 2, pp. 122-128.
    Li, S.J., Li, G.Q., Tang, J., and Li, Q.S., (2002) “Shallow rectangular TLD for structural control implementation,” Applied Acoustics, vol. 63, Issue: 10, pp.1125-1135.
    Rana, R., and Soong, T.T., (1998) “Parametric study and simplified design of tuned mass dampers,” Engineering Structures, vol. 20, Issue: 3, pp. 193-204.
    Wu, J.S., and Hsieh, M., (2002) “Study on the dynamic characteristic of a U-type tuned liquid damper,” Ocean Engineering, vol. 29, pp. 689-709.
    Xue, S.D., Ko, J.M., and Xu, Y.L., (2000) “Tuned liquid column damper for suppressing pitching motion of structures,” Engineering Structures, vol. 22, Issue: 11, pp. 1538-1551.
    Yamamoto, K., and Kawahara, M., (1999) “Structural oscillation control using tuned liquid damper,” Computers & Structures, vol. 71, Issue: 4, pp.435-446.
    徐德修(1997),“高壓伺服機構之設計及防震功能測試”,行政院國家
    科學委員會專題研究計劃成果報告,NSC87-2211-E-006-045。
    張志華(1997),“非線性長波與結構物互制現象之研究”,國立成功
    大學博士論文。
    林威宏(1998),“含流動流體之阻尼器對結構的減振效應”,國立成
    功大學碩士論文。
    林明德(1999),“水錘波傳遞特性及液柱分離現象分析”,國立成功
    大學碩士論文。
    曾申融(2000),“「浮蓋板與儲容器」動力特性之試驗研究”,國立
    成功大學碩士論文。
    李國彰(2000),“「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應”,國立成功大學碩士論文。
    丁舜臣、唐啟釗(2001),”部份盛水的有隔間容器對工程結構物振動之阻尼效應研究(二)”,行政院國家科學委員會專題研究計劃成果報告NSC90-2211-E006
    -124。
    黃勝弘(2002),“「隔間容器阻尼器」動力特性之試驗研究”,國立
    成功大學碩士論文。
    唐啟釗、丁舜臣、黃勝弘、蘇建瑋、廖建能(2002),”隔間水槽阻尼
    器之瞬變流動”,中華民國力學學會,第二十六屆全國力學會議論文集。

    下載圖示 校內:立即公開
    校外:2003-08-21公開
    QR CODE