簡易檢索 / 詳目顯示

研究生: 林俊明
Lin, Chung-Ming
論文名稱: 邊界層附近減阻氣泡之特性
The Characteristics of Drag-Reducing Air Bubbles near Boundary Layer
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 84
中文關鍵詞: 微泡減阻粒子影像速度儀二相流邊界層
外文關鍵詞: Drag-Reducing, PIV, Two Phase Flow, Boundary Layer
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以微泡減低物體於流場中的阻力已被證實是一種有效的減阻方法,雖然已有一些數值模擬的結果被提出並與實驗結果有定性上的吻合,但氣泡減阻實際的運作機制仍然是尚未被了解的部份,尤其是氣泡在流場中分佈的情形與尺寸的變化,被指出是影響減阻效果的關鍵。

      本文以PIV對一圓形噴流流場及空蝕水槽測試段的流速與實驗架構之平板邊界層進行量測,並比較其特性與文獻中的描述,確定儀器及使用技巧之正確性。

      再對已知可產生明顯減阻效果之含氣泡流場觀察氣泡位置分佈及尺寸變化,並以人工進行資料的統計,得到相關的機率分佈函數,發現有超過一半以上的氣泡會分佈在邊界層外,因此無法確定氣泡分佈與緩衝層之間的關係;流速較高時,氣泡會往壁面集中靠近,氣泡之尺寸則會在下游處成長為剛產生時的2~4倍不等。

      Microbubbles has been proven to be a successful drag-reducing techniquefor a body in fluids. Although some numerical simulations have qualitativeagreements with experimental results, the mechanism of the microbubble drag reduction still remains unidentified. Generally, the spatial distribution in flow field and size change of gas bubbles are considered to be the key of drag reduction.

      First we measure the flow field of a circular jet flow, the velocity distri-bution of the testsection of a cavitaion channel and the boundary layer of aflat-plate in testsection, and then compare the measurements with referencesto prove the equipments and experiment skills.

      Then, we check the bubbles’ spatial distribution and size change of the flow with bubbles at known drag reduction conditions, and obtain the probabilitydistribution functions. Because over-half of bubbles distribute outside theboundary layer, we cannot confirm the relationship between the bubble distribution near buffer layer and drag reduction effect. When the flow velocitygets higher, bubbles will concentrate closer to the wall. Also, the size ofbubbles will grow 2~4 times in the downstream than those just generated.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究目的 8  第二章 研究方法 9 2-1 實驗設備與儀器 9  2-1-1 空蝕水槽 9 2-1-2 實驗架構 11 2-1-3 多孔透氣材 11 2-1-4 粒子影像速度儀 14 2-1-5 流量計 14 2-2 實驗方法 14 2-2-1 粒子影像速度儀校正(圓形噴流流場量測與驗證) 14 2-2-1-1 流速分佈 15 2-2-1-2 軸向流速的衰減 17 2-2-1-3 自我相似 19 2-2-1-4 小結 20 2-2-2 實驗步驟 20 2-2-3 空蝕水槽流速校正 21 2-2-4 無氣泡之平板邊界層流速分佈量測與驗證 22 2-2-5 氣泡之位置及直徑分佈量測 27 2-2-6 誤差分析 28 第三章 實驗結果與討論 31 3-1 實驗結果 31 3-1-1 氣泡位置 31 3-1-1-1 孔徑1μm多孔材產生之氣泡位置分佈 31 3-1-1-2 孔徑100μm多孔材產生之氣泡位置分佈 37 3-1-2 氣泡位置在流線方向的變化 43 3-1-2-1 孔徑1μm多孔材產生之氣泡位置分佈變化 43 3-1-2-2 孔徑100μm多孔材產生之氣泡位置分佈變化 45 3-1-3 氣泡尺寸 48 3-1-3-1 孔徑1μm多孔材產生之氣泡直徑分佈 48 3-1-3-2 孔徑100μm多孔材產生之氣泡直徑分佈 51 3-1-4 氣泡尺寸在流線方向的變化 55 3-2 討論 57 3-2-1 氣泡位置 57 3-2-2 氣泡尺寸 58 第四章 結論與未來展望 64 4-1 結論 64 4-2 未來展望 66 參考文獻 67 附錄 各實驗結果數據 69 自述 84

    Kodama, Y.; Kakugawa, A.; Takahashi, T. & Kawashima, H. (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int. J. Heat and Fluid Flow 21, 582-588.

    Latorre, R. (1997) Ship hull drag reduction using bottom air injection. Ocean Engng. 24(2), 161-175.

    Latorre, R. & Bablenko, V. (1998) Role of bubble injection technique in drag reduction. Proc. ONR-NUWC Int. Sym. on Seawater Drag Reduction, Newport, RI, 319-326.

    Latorre, R.; Miller, A. & Philips, R. (2003) Micro-bubble resistance reduction on a model SES catamaran. Ocean Engng. 30, 2297-2309.

    Legner, H.H. (1984) A simple model for gas bubble drag reduction. Phys. Fluids 27, 2788-2790.

    Madavan, N.K.; Deutsch, S. & Merkle, C.L. (1984) Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27(2), 356-363.

    Madavan, N.K.; Merkle, C.L. & Deutsch S. (1985) Numerical investigations into the mechanisms of microbubble drag reduction. J. Fluids Engng. 107, 237-256.

    Madavan, N.K.; Deutsch, S. & Merkle, C.L. (1985) Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156, 237-256.

    Marie, J.L. (1986) A simple analytical formulation for microbubble drag reduction. Phys.-Chem. Hydro. 13, 213-220.

    Merkle, C.L. & Deutsch, S. (1992) Microbubble drag reduction in liquid turbulent boundary layer. Appl. Mech. Rev. 45(3-1), 103-127.

    Sanders, W.C.; Ivy, E.M.; Ceccio, S.L.; Dowling, D.R. & Perlin, M. (2003) Microbubble drag reduction at high reynolds number. Proc. ASME FEDSM’03, 4th ASME_JSME Joints Fluids Engng. Conf., Hawaii, USA.

    Sugiyama, K.; Kawamura, T.; Takagi, S. & Matsumoto, Y. (2002) Numerical simulations on drag reduction mechanism by microbubbles.

    Takahashi, T; Kakugawa, A.; Nagaya, S.; Yanagihara, T. & Kodama, Y. (2001) Mechanisms and scale effects of skin friction reduction by microbubbles. Sym. Smart Control of Turbulence, Tokyo, Japan.

    Mathieu, J. & Scott, J. (2000) An Introduction to Turbulent Flow. Cambridge University Press.

    Montgomery, D.C. & Runger, G.C. (1990) Applied Statistics and Probability for Engineers, 2nd ed. John Wiley & Sons, Inc.

    Munson, B.R., Young, D.F. & Okiishi, T.H. (1994) Fundamentals of Fluid Mechanics, 2nd ed. John Wiley & Sons, Inc.

    Pope, S.B. (2000) Turbulent Flows. Cambridge University Press.

    Tennekes, I.I. & Lumley, J.L. (1972) A First Course in Turbulence. MIT Press, Cambridge, MA.

    嚴祖煦 (2001) 數值分析在微氣泡減阻技術上之研究,國防大學中正理工學院造船工程研究所碩士論文。

    劉驥佑 (2003) 微泡減阻技術之基礎研究,國立台灣大學工程科學與海洋工程研究所碩士論文。

    下載圖示 校內:立即公開
    校外:2004-08-05公開
    QR CODE