簡易檢索 / 詳目顯示

研究生: 葉韋志
Yeh, Wei-Jih
論文名稱: 微分變換於一維樑柱挫曲與熱傳導問題求解之應用
Differential Transformation to One Dimensional Beam Buckling and Heat Conduction Problems
指導教授: 陳介力
none
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 50
中文關鍵詞: 邊界值問題微分轉換挫曲熱傳導
外文關鍵詞: heat conduction, boundary value problem, buckling, differential transformation
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   樑柱撓曲行為力學中的邊界值求解問題與初始值與邊界值的交界不連續的熱傳問題長久以來一直是數值分析研究的重要課題。關於樑柱撓曲行為力學中的邊界值求解問題,以往發展出來的數值方法往往由於需要大量繁瑣的計算,或由於過多符號運算變得複雜而冗長。對於求解熱傳問題時,常常因為初始值與邊界值的交界不連續,使得求解相當困難。

      本論文主要是以微分變換法為基礎,分別對此兩類問題進行求解。微分變換是一種以泰勒級數展開為數學基礎的函數轉換,它能將線性及非線性微分方程轉換成代數方程進行求解,具系統化處理非線性問題,快速收斂的特性,並可將工程問題的解,以k階泰勒級數展開之型式來呈現,在計算的效率與精確度上微分變換法都有相當優越的表現。

      微分變換法處理樑柱撓曲行為力學中的邊界值問題時,先化為初始值問題再符合邊界條件求出未知數,計算過程相當簡單;對於求解熱傳問題,本文使用近似的連續函數來取代不連續之邊界與初始條件,再以微分變換處理,並深入探討區間連接的問題。

      The buckling behavior of nonlinear beams and the heat conduction boundary value problems are focal studies in engineering problems.

      In this dissertation, the differential transformation method with a systematic procedure is applied to solve nonlinear two-point boundary value problems in solid mechanics and heat conduction problem. In solid mechanic problem, three types of nonlinear boundary value problems are considered in this study, i.e., the deflective of a tip-loaded nonlinear cantilever beam, the nonlinear buckling of a nonlinear cantilever beam without and with imperfection, and the nonlinear buckling of a simply supported beam without and with imperfection. The one-dimensional heat conduction problem considered in this dissertation is to study the effect of discontinuity on the resulting solution.

      In the initial value problems, the differential transformation method can provide a fixed step and adaptive step strategy to improve the computational efficiency. In this study, a boundary value problem can be transformed to an initial value problem with undetermined parameters and it can be solved in a similar manner as an initial value problem. The simulation results show that the solutions obtained by differential transformation are accurate in comparison with exact solutions, and the computational stability and efficiency are also improved with the proposed procedure.

    中文摘要I 英文摘要II 誌謝III 目錄IV 表目錄VI 圖目錄VII 第一章 緒論1 1-1 研究背景與目的1 1-2 文獻回顧2 1-3 本文內容3 第二章微分變換4 2-1 前言4 2-2 一維微分變換的數學原理4 2-3 二維微分變換的數學原理5 第三章 微分變換在樑柱撓曲行為計算上之應用7 3-1前言7 3-2 微分變換在非線性彈性樑形變求解上之應用7 3-3 結果分析11 3-4 結論12 第四章 微分變換在熱傳上的應用21 4-1 前言21 4-2 微分變換在線性熱傳導求解上之應用21 4-3. t方向切割24 4-4. x方向、t方向切割27 第五章 結論45 5-1 結論45 5-2 建議45 參考文獻47 自述50

    Archer R.R., Stability Limits for a Clamped Spherical Shell Segment Under Uniform Pressure, Q. Appl. Math. 15 (1957) 355–366.

    B. Budiansky, Buckling of Clamped Shallow Spherical Shells, Proc. IUTAM Symp. on the Theory of Thin Elastic Shells, W. T. Koiter, ed. North-Holland, Delft, Netherlands, 1959.

    Cao H.L., Potier-Ferry M., An Improved Iterative Method for Large Strain Viscoplastic Problems, Int. J. Numer. Methods Eng., 44 (1999) 155–176.

    Chen C.K., Ho S.H., Application of Differential Transformation to Eigenvalue Problem, Applied Matjematics and Computation, Vol. 79, pp. 173-188,1996.

    Chen C.K., Ho S.H., Free Vibration Analysis of non-uniform Timoshenko Beams Using Differentail Transform, Applied Mathematical Modeling, Vol.22, No.4-5, pp.219-234, 1998a.

    Chen C.L., Liu Y.C., Solution of two-boundary-value problems using the differential transformation method , Journal of Optimization Theory and Application 99 (1998) 22-35.

    Chiou, J. S., Tzeng, J. R., Application of the Taylor Transform to Nonliear Vibration Problems, Trans. ASME, J. of Vibration and Acoustics, Vol. 118, pp. 83-87,1996.

    He J.H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-linear Problems, Int. J. Non-Linear Mech. 35 (2000) 37–43.

    Jang M.J., Chen C.L., Analysis of the Response of Strongly Non-linear Damped System Using Differential Transformation Technique, Appl. Math. and Comput. 88, (1998) 137-151.

    Jang M.J., Chen C.L., Liu Y.C., On solving the initial-value problems using the differential transformation method, Appl. Math. and Comput. 115 (2000) 145-160.

    Jang M.J., Chen C.L., Liu Y.C., Two-dimensional differential transformation method for partial differential equation, Appl. Math. and Comput. 121 (2001) 261-270.

    Kalaba R., Some Aspects of Quasilinearization, Nonlinear
    Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963.

    Levy S., Bending of Rectangular Plates with Large Deflection, NACA T.N. No. 846, NACA Rep. 737 (1942).

    Murthy S.D.N., Sherbourne A.N., Nonlinear Bending of Elastic Plates of Variable Profile, J. Eng. Mech. 100(EM2) (1974) 251–265.

    Pollandt R., Solving Nonlinear Differential Equations of Mechanics With the Boundary Element Method and Radial Basis Functions, Int. J. Numer. Methods Eng. 40 (1997) 61–73.

    Ramachandra L.S., D. Roy, A new method for nonlinear two-point boundary value problems in solid mechanics, ASME J. Appl. Mech. 68 (2001) 776-786.

    Thurston G. A., A Numerical Solution of the Nonlinear Equations for Axisymmetric Bending of Shallow Spherical Shells, ASME J. Appl. Mech. 83 (1963) 557–568.

    Thurston G.A., A Numerical Solution of the Nonlinear Equations for Axisymmetric Bending of Shallow Spherical Shells, ASME J. Appl. Mech. 28 (1961) 557–562.

    Thurston G. A., Continuation of Newton’s Method Through Bifurcation Points, ASME J. Applied. Mechanics 30 (1969) 425–430.

    Turvey G. J., Large Deflection of Tapered Annular Plates by Dynamic Relaxation, J. Eng. Mech. 104(EM2) (1978) 351–366.

    Timoshenko S.P., Gere J.M., Theory of elastic stability, McGraw-Hill, New Work, 1963.

    Vannucci P., Cochelin B., Damil N., Potier-Ferry M., An Asymptotic Numerical Method to Compute Bifurcating Branches, Int. J. Numer. Methods Eng. 41 (1998) 1365–1389.

    Way S., Bending of Circular Plates With Large Deflections, ASME J. Appl. Mech., 56 (1934) 627–636.

    Yeh K.Y., Zhang X.J., Wang X.Z., In Some Properties and Calculation of the Exact Solution to von Karman Equations of Circular Plates Under a Concentrated Load, Int. J. Non-Linear Mech. 25 (1990) 17–31.

    Yeh K.Y., Zhang X.J., Zhou Y.H., An Analytical Formula of the Exact Solution to the von Karman Equations of a Circular Plate Under a Concentrated Load, Int. J. Non-Linear Mech. 24 (1989) 551–560.

    Yu L.T., Chen C.K., Application of Taylor transform to Optimize Rectangular Fins with Variable Thermal Parameters, Applied Mathematical Modeling 22(1998) 11-21.

    Yu L.T., Chen C.K., The solution of the Blasius Equation by the Differential Transform Method, Math. Comput. Modeling Vol. 28, No. 1,pp.101-111,1998.

    趙家奎, 微分轉換及其在電路上中的應用, 華中理工大學出版社, 1986

    何星輝著,微分轉換於自旋、預扭、承受軸向負載Timoshenko樑振動問題之研究,國立成功大學機械工程學系博士論文

    下載圖示 校內:立即公開
    校外:2004-08-27公開
    QR CODE