簡易檢索 / 詳目顯示

研究生: 史育璇
Shih, Yu-Hsuan
論文名稱: 芪類化合物單獨或合併奈米銀對食源性病原菌的抗菌作用及抗菌機轉
Antibacterial effects and the mechanisms of stilbenoid compounds alone or combined with silver nanoparticles against foodborne pathogens
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 芪類化合物奈米銀抗菌活性抗菌機制次世代定序
外文關鍵詞: antibacterial activity, antibacterial mechanisms, next generation sequence, stilbenoid compounds, silver nanoparticles
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織指出,全世界每年約有6億人口,因食用受汙染的食品而生病,並且有42萬人因食源性疾病而死亡,尤其是兒童和老人。這些遭到細菌、病毒等有害物質汙染的食物,造成了超過兩百多種的疾病,範圍從腹瀉到癌症都有。其中金黃色葡萄球菌和仙人掌桿菌是常見的食源性病原菌,以生肉、生鮮蔬菜、米飯和未煮熟的食物,較常受到這些細菌的汙染。在食品工業中,會利用有很多方法來控制食品中的微生物,包括加熱、冷凍、輻照、高壓和添加化學防腐劑等。儘管這些方法可以抑制病原菌和腐敗菌的生長,但它們對食物甚至人類的健康都可能造成不良影響,尤其是化學防腐劑。因此,越來越多人在探討天然抗菌劑是否能替代食品中添加的化學防腐劑。植物來源的天然抗菌劑,如酚類化合物,不但對健康有許多益處,也具有抗菌,抗病毒活性。芪類化合物,包括紫檀芪、白皮杉醇和松芪,都是酚類化合物的一種。它們具有抗氧化,抗菌,抗發炎等多種功能,是理想的天然抗菌成份,但其抗菌活性及機轉仍不清楚。另外,奈米銀由於其良好的抗菌特性,已被許多領域拿來當作抗微生物劑使用,而在食品工業中,奈米銀較常被拿來使用在食品的包裝材料上,雖然已知奈米銀具有良好的抗菌特性,但其抗菌機轉目前還不完全清楚。因此本研究的目的是了解芪類化合物和奈米銀對於食源性病源菌的抗菌活性,並進一步探討單獨及合併處理對食源性病源菌可能的作用機轉。
    本研究使用的食源性病原菌為金黃色葡萄球菌和仙人掌桿菌。藉由最低抑制濃度、最低殺菌濃度、抗菌協同作用、抑菌圈和時間殺菌曲線測試等方法進行抗菌實驗,測試紫檀芪、白皮杉醇、松芪和奈米銀的抗菌活性。通過掃描式電子顯微鏡和流式細胞儀觀察細胞形態,分析細菌存活力、活性氧累積、細胞凋亡以及DNA損傷,並以定量聚合酶連鎖反應分析基因表現量。另外藉由次世代定序檢測基因表現量的變化情形,推測可能的抗菌機制。
    在抗菌實驗中,三種芪類化合物與奈米銀均具有抗菌活性。在紙錠擴散測試中,紫檀芪及奈米銀對金黃色葡萄球菌和仙人掌桿菌的抑制環約為1到1.4公分。紫檀芪、白皮杉醇、松芪和奈米銀對金黃色葡萄球菌和仙人掌桿菌的MIC和MBC範圍為25-100 μg/ml。在時間殺菌曲線測試中,以50 μg/ml紫檀芪處理4小時後,仙人掌桿菌減少5個log cfu。FICI值顯示紫檀芪和奈米銀之間具有部分協同作用。以紫檀芪及奈米銀處理後,細菌大小和細胞膜結構完整性改變。在仙人掌桿菌中,以紫檀芪處理後細胞存活及細胞凋亡的程度呈現劑量依賴性關係,且可觀察到細胞內ROS增加。在金黃色葡萄球菌中,經紫檀芪和奈米銀處理後,細胞存活力逐漸下降、ROS產生,且細胞凋亡的程度逐漸增加,此外由qPCR的結果得知,紫檀芪和奈米銀單獨及合併處理會誘導與凋亡樣細胞死亡相關的基因改變。如Rec A、Uvr A的表現量上升,Lex A的表現量下降。經由上述結果總結顯示,紫檀芪與奈米銀會藉由誘導細菌細胞內產生ROS,使Rec A蛋白活化,並導致Lex A蛋白水解,最後造成細菌凋亡樣死亡。

    According to the report of WHO in 2015 that there are 420,000 people die for foodborne disease every year. Most of foodborne diseases were caused by bacteria, viruses, and parasites. Thus, controlling the foodborne pathogens in food is very important. Stilbenoid compounds are kinds of phenolic compounds with many functions, including the antioxidant, antibacterial and anti-inflammation effects. It’s an ideal natural antibacterial ingredient. In addition, silver nanoparticle has been used as antimicrobial agent in many fields owing to its good antibacterial properties. However, the antibacterial effects and the mechanisms of those compounds are not clear. Therefore, the purpose of this study was to understand the antibacterial activity of stilbenoid compounds and silver nanoparticle against foodborne pathogens, and study the possible antibacterial mechanisms of stilbenoid compounds in combination with silver nanoparticles. Inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration index (FICI) and time-kill curve test are used to test the antibacterial activity of the stilbenoid compounds and silver nanoparticles. Three kinds of stilbenoid compounds and silver nanoparticles show antibacterial effects against foodborne pathogens. Among them, pterostilbene against Bacillus cereus and pterostilbene combined with silver nanoparticles against Staphylococcus aureus have better antibacterial effects. After treated with pterostilbene and silver nanoparticles, the morphology of B. cereus and S. aureus change. The viability of B. cereus and S. aureus decreased while ROS production and apoptosis increased. And the expression of related gene of apoptosis like death, including Rec A, Uvr A were upregulated, and Lex A was downregulated. Taken together, treatment of pterostilbene and silver nanoparticles may cause ROS accumulation and induce apoptosis like death.

    第一章、 序論 1 第二章、 文獻回顧 2 第一節、 食源性疾病的發展 2 第二節、 食品保存方法及可能產生的問題 3 第三節、 天然抗菌劑 5 第四節、 芪類化合物(Stilbenoid)及其類似物的抗菌作用和機制 6 第五節、 奈米銀抗菌機轉 10 第六節、 細菌死亡機制 12 第七節、 腸道微生物 15 第八節、 次世代定序(Next Generation Sequencing;NGS) 16 第三章、 研究目的 18 第四章、 研究材料與方法 19 第一節、 研究材料 19 (一) 菌株 19 (二) 儀器 19 (三) 試劑與耗材 20 第二節、研究方法與實驗步驟 22 第五章、 研究架構 28 第六章、 研究結果 29 第一節、 奈米銀之物理化學特性 29 第二節、 芪類化合物與奈米銀對食源性病原菌的抗菌活性 29 第三節、 芪類化合物與奈米銀對食源性病原菌的最小抑菌濃度(MIC)和最小殺菌濃度(MBC) 29 第四節、 紫檀芪對食源性病原菌的殺菌效果 30 第五節、 紫檀芪結合奈米銀對食源性病原菌的抗菌協同作用 30 第六節、 紫檀芪與奈米銀對食源性病原菌形態的影響 31 第七節、 紫檀芪與奈米銀對食源性病原菌存活力、活性氧化物質(ROS)產生以及細胞凋亡的影響 32 第八節、 紫檀芪與奈米銀誘導食源性病原菌產生凋亡樣細胞死亡(Apoptosis-like cell death;ALD) 34 第九節、 紫檀芪對腸道微生物的影響 34 第十節、 紫檀芪與奈米銀對食源性病原菌基因之影響 35 第七章、 討論 36 第八章、 結論與建議 41 第九章、 參考文獻 42

    Adams M, Moss M. 2008. Food microbiology:RSC Publishing.
    Akinwumi B, Bordun K-A, Anderson H. 2018. Biological activities of stilbenoids. International Journal of Molecular Sciences 19:792.
    Al-Zoreky N. 2009. Antimicrobial activity of pomegranate (punica granatum l.) fruit peels. International Journal of Food Microbiology 134:244-248.
    Alonso-Villaverde V, Voinesco F, Viret O, Spring J-L, Gindro K. 2011. The effectiveness of stilbenes in resistant vitaceae: Ultrastructural and biochemical events during plasmopara viticola infection process. Plant Physiology and Biochemistry 49:265-274.
    Bahassi EM, Stambrook PJ. 2014. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis 29:303-310.
    Bayles KW. 2014. Bacterial programmed cell death: Making sense of a paradox. Nature Reviews Microbiology 12:63.
    Bell JC, Kowalczykowski SC. 2016. Reca: Regulation and mechanism of a molecular search engine. Trends in Biochemical Sciences 41:491-507.
    Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology 12:2385-2397.
    Bhunia AK. 2018. Foodborne microbial pathogens: Mechanisms and pathogenesis:Springer.
    Blake M, Weimer B, McMahon DJ, Savello P. 1995. Sensory and microbial quality of milk processed for extended shelf life by direct steam injection. Journal of Food Protection 58:1007-1013.
    Bostanghadiri N, Pormohammad A, Chirani AS, Pouriran R, Erfanimanesh S, Hashemi A. 2017. Comprehensive review on the antimicrobial potency of the plant polyphenol resveratrol. Biomedicine & Pharmacotherapy 95:1588-1595.
    Chan WT, Espinosa M. 2016. The streptococcus pneumoniae pezat toxin–antitoxin system reduces β-lactam resistance and genetic competence. Frontiers in Microbiology 7:1322.
    Chen W, Yeo SCM, Chuang XF, Lin H-S. 2016. Determination of pinostilbene in rat plasma by lc–ms/ms: Application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 120:316-321.
    Davidson P, Doyle M, Beuchat L, Montville T. 2001. Food microbiology–fundamentals and frontiers. Chemical Preservatives and Natural Antimicrobial Compounds:593-627.
    Dewachter L, Verstraeten N, Fauvart M, Michiels J. 2016. The bacterial cell cycle checkpoint protein obg and its role in programmed cell death. Microbial Cell 3:255.
    Dewachter L, Verstraeten N, Jennes M, Verbeelen T, Biboy J, Monteyne D, et al. 2017. A mutant isoform of obge causes cell death by interfering with cell division. Frontiers in Microbiology 8:1193.
    Dhama K, Rajagunalan S, Chakraborty S, Verma A, Kumar A, Tiwari R, et al. 2013. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: A review. Pakistan Journal of Biological Sciences 16:1076.
    Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. 2014. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences 103:1931-1944.
    Dufour D, Lévesque CM. 2013. Cell death of streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. Journal of Bacteriology 195:105-114.
    Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363:1-24.
    Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Molecular cell 46:561-572.
    Engelberg-Kulka H, Hazan R, Amitai S. 2005. Mazef: A chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. Journal of Cell Science 118:4327-4332.
    Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in escherichia coli: An apoptotic-like death is inhibited by the mazef-mediated death pathway. PLOS Biology 10:e1001281.
    Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. 2014. Apoptosis-like death, an extreme sos response in escherichia coli. mBio 5:e01426-01414.
    Erill I, Campoy S, Barbé J. 2007. Aeons of distress: An evolutionary perspective on the bacterial sos response. FEMS Microbiology Reviews 31:637-656.
    Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L, Rimando AM, et al. 2017. Pterostilbene‐induced changes in gut microbiota composition in relation to obesity. Molecular Nutrition & Food Research 61:1500906.
    Ferreira S, Domingues F. 2016. The antimicrobial action of resveratrol against listeria monocytogenes in food‐based models and its antibiofilm properties. Journal of the Science of Food and Agriculture 96:4531-4535.
    Fondevila M, Herrer R, Casallas M, Abecia L, Ducha J. 2009. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology 150:259-269.
    Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866-1875.
    Hayek S, Gyawali R, Ibrahim S. 2013. Antimicrobial natural products.
    Heo KT, Kang S-Y, Hong Y-S. 2017. De novo biosynthesis of pterostilbene in an escherichia coli strain using a new resveratrol o-methyltransferase from arabidopsis. Microbial Cell Factories 16:30.
    Hijona E, Aguirre L, Pérez-Matute P, Villanueva-Millán M, Mosqueda-Solis A, Hasnaoui M, et al. 2016. Limited beneficial effects of piceatannol supplementation on obesity complications in the obese zucker rat: Gut microbiota, metabolic, endocrine, and cardiac aspects. Journal of Physiology and Biochemistry 72:567-582.
    Hui P. 2012. Next generation sequencing: Chemistry, technology and applications. In: Chemical diagnostics:Springer, 1-18.
    Hwang D, Lim Y-H. 2015. Resveratrol antibacterial activity against escherichia coli is mediated by z-ring formation inhibition via suppression of ftsz expression. Scientific Reports 5:10029.
    Kershaw J, Kim K-H. 2017. The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: A review. Journal of Medicinal Food 20:427-438.
    Koh JC, Barbulescu DM, Salisbury PA, Slater AT. 2016. Pterostilbene is a potential candidate for control of blackleg in canola. PLOS ONE 11:e0156186.
    Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, et al. 2017. Resveratrol, pterostilbene, and baicalein: Plant-derived anti-biofilm agents. Folia microbiologica:1-12.
    Lado BH, Yousef AE. 2002. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection 4:433-440.
    Lee W, Kim K-J, Lee DG. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on escherichia coli. Biometals 27:1191-1201.
    Lee W, Basri D, Ghazali A. 2017. Bactericidal effect of pterostilbene alone and in combination with gentamicin against human pathogenic bacteria. Molecules 22:463.
    Lee W, Lee DG. 2017. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against salmonella typhimurium. Biochemical and Biophysical Research Communications 489:228-234.
    Lubitz SA, Ellinor PT. 2015. Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm 12:1062-1070.
    Mora‐Pale M, Bhan N, Masuko S, James P, Wood J, McCallum S, et al. 2015. Antimicrobial mechanism of resveratrol‐trans‐dihydrodimer produced from peroxidase‐catalyzed oxidation of resveratrol. Biotechnology and Bioengineering 112:2417-2428.
    Morris C, Brody AL, Wicker L. 2007. Non‐thermal food processing/preservation technologies: A review with packaging implications. Packaging Technology and Science 20:275-286.
    Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, et al. 2014. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 10:1-9.
    Ortega-Rivas E, Salmerón-Ochoa I. 2014. Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Critical Reviews in Food Science and Nutrition 54:190-207.
    Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Applied and Environmental Microbiology 73:1712-1720.
    Pan Z, Agarwal AK, Xu T, Feng Q, Baerson SR, Duke SO, et al. 2008. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol. BMC Medical Genomics 1:7.
    Patil MP, Kim G-D. 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology 101:79-92.
    Peeters SH, de Jonge MI. 2018. For the greater good: Programmed cell death in bacterial communities. Microbiological Research 207:161-169.
    Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, et al. 2014. Inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA Supporting Publications 11:621E.
    Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, et al. 2016. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology 54:155-164.
    Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. 2017. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry.
    Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry 143:922-935.
    Plumed-Ferrer C, Väkeväinen K, Komulainen H, Rautiainen M, Smeds A, Raitanen J-E, et al. 2013. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International Journal of Food Microbiology 164:99-107.
    Potter G, Patterson L, Wanogho E, Perry P, Butler P, Ijaz T, et al. 2002. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome p450 enzyme cyp1b1. British Journal of Cancer 86:774.
    Rai M, Deshmukh S, Ingle A, Gade A. 2012. Silver nanoparticles: The powerful nanoweapon against multidrug‐resistant bacteria. Journal of Applied Microbiology 112:841-852.
    Raybaudi‐Massilia RM, Mosqueda‐Melgar J, Soliva‐Fortuny R, Martín‐Belloso O. 2009. Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety 8:157-180.
    Ren X, An P, Zhai X, Wang S, Kong Q. 2019. The antibacterial mechanism of pterostilbene derived from xinjiang wine grape: A novel apoptosis inducer in staphyloccocus aureus and escherichia coli. LWT-Food Science and Technology 101:100-106.
    Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, et al. 2017. Food additives, contaminants and other minor components: Effects on human gut microbiota—a review. Journal of Physiology and Biochemistry:1-15.
    Ruiz M, Fernández M, Pico Y, Manes J, Asensi M, Carda C, et al. 2009. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. Journal of Agricultural and Food Chemistry 57:3180-3186.
    San Martin M, Barbosa-Cánovas G, Swanson B. 2002. Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 42:627-645.
    Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, et al. 2008. A stress-inducible resveratrol o-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiology 148:1630-1639.
    Shan B, Cai Y-Z, Brooks JD, Corke H. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology 117:112-119.
    Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environmental Science & Technology 44:5649-5654.
    Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, et al. 2011. Nanosilver on nanostructured silica: Antibacterial activity and ag surface area. Chemical Engineering Journal 170:547-554.
    Sun D, Zhang W, Mou Z, Chen Y, Guo F, Yang E, et al. 2017. Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. ACS applied materials & interfaces 9:10047-10060.
    Sun Y, Wu X, Cai X, Song M, Zheng J, Pan C, et al. 2016. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Molecular Nutrition & Food Research 60:1924-1932.
    Surh Y-J, Na H-K. 2016. Therapeutic potential and molecular targets of piceatannol in chronic diseases. In: Anti-inflammatory nutraceuticals and chronic diseases:Springer, 185-211.
    Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochemical Journal 474:1823-1836.
    Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen P. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57:5987-6000.
    Wang C-Y, Huang H-W, Hsu C-P, Yang BB. 2016. Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition 56:527-540.
    Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, et al. 2016. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology 10:513-520.
    Yang S-C, Tseng C-H, Wang P-W, Lu P-L, Weng Y-H, Yen F-L, et al. 2017. Pterostilbene, a methoxylated resveratrol derivative, efficiently eradicates planktonic, biofilm, and intracellular mrsa by topical application. Frontiers in Microbiology 8:1103.
    Yeni F, Yavaş S, Alpas H, Soyer Y. 2016. Most common foodborne pathogens and mycotoxins on fresh produce: A review of recent outbreaks. Critical Reviews in Food Science and Nutrition 56:1532-1544.
    Zhang X. 2016. The functions of the cid and lrg operons in s. Aureus programmed cell death.
    Zhao L. 2013. The gut microbiota and obesity: From correlation to causality. Nature Reviews Microbiology 11:639.
    Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, et al. 2018. Fungal silver nanoparticles: Synthesis, application and challenges. Critical Reviews in Biotechnology 38:817-835.
    黃登福, 陳建元. 2008. 實用食品添加物:華格那企業.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE