簡易檢索 / 詳目顯示

研究生: 饒中翔
Jao, Chung-Hsiang
論文名稱: 探討沙堆實驗之崩塌型態
Investigation of sandpile collapse patterns
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 99
中文關鍵詞: 沙堆實驗階段式崩塌整體式崩塌安全係數理想破壞曲面
外文關鍵詞: Sandpile experiment, Sequential failure, Single-release failure, Safety factor, Idealized curved surface
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討山坡地地貌特徵引發不同崩塌型態的條件,通過沙堆實驗分析崩塌型態與坡面形狀、破壞面的關係。在沙堆實驗中採用單一顆粒材料在固定點持續供砂於沙堆坡面上,使用三種不同寬度的砂箱堆積出不同形狀的坡面,並利用高速攝影機紀錄沙堆坡面崩塌的過程,藉由影像處理技術分析崩塌範圍,與座標轉換系統得出沙堆坡面的數值高程模型。為了分析坡面的穩定性,藉由理想破壞曲面(Tai et al., 2020) 建構初始崩塌時的破壞面,並討論坡面破壞前之幾何特徵 (堆積分佈、坡度與破壞面)。配合建構不同形狀的幾何坡面了解坡面形狀對安全係數的影響,當坡面的曲面最高點位置接近坡頂時,其結果顯示存在一崩塌深度使坡面呈現最不穩定的狀態。
    實驗結果顯示在三種坡型下存在兩種類型的崩塌型態 (階段式崩塌和整體式崩塌)。在階段式崩塌中,其崩塌型態擁有溯源型 (retrogressing) 的特徵(Cruden & Varnes, 1996),其破壞面由坡趾處逐漸往坡頂延伸,崩塌過程呈現多階段且連續,沙堆土體的堆積分佈主要沿著主軸 (down-slope) 方向堆積,並且初始崩塌區域的坡型呈現直坡。而整體式崩塌中,崩塌時為單一土體滑動且初始坡壞面位於坡頂處,其堆積分佈以加沙點向外延伸成一個向上凸起的橢圓形,儘管兩種崩塌型態對應不同的坡面形狀,藉由安全係數推估其最大崩塌深度皆約為主軸長度的 0.03 倍。總結而言,坡型影響不同之崩塌型態,由本研究分析沙堆幾何特徵推估可能之崩塌型態,提供一個協助評估災害之方法。

    In this study, the collapse patterns and the area of displaced material are investigated through sandpile experiments. Sand grains are added gradually and continuously at a fixed point in the upstream section of the initial sand slope until the occurrence of collapses. Three widths of sandbox were assigned for constructing the initial sandpile slopes were. The topographies of pre- and post-collapse are obtained by a laser-scanning system. A CMOS-high-speed camera was employed to capture the collapse process and analyze the area of displaced material using morphological image processing. The plausible failure surface is estimated by the idealized curved surface (ICS) and the corresponding safety factor to discuss the influence of different topography. Two types of slope failure (sequential failure and single-release failure) were identified, and the width of the sandbox plays a significant role on the types of failure and the propagation of the failure surface. In the type of sequential failure, the initial displaced area is found to be on a flat slope and located near the toe of the slope. In single-release failure, the initial displacement took place on a slope with convex shape in transverse direction and located near the top of the slope. It is interesting that, for both types, the maximum failure depth is approximately 0.03 times of the length of the initial failure surface. Although more investigations are needed, these findings reveal a general hint of collapse type for estimating landslide type as well as the associate risk assessment.

    摘要 i 英文延伸摘要 ii 誌謝 xiv 目錄 xv 表格 xvii 圖片 xviii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 崩塌的類型與滑動型態 2 1.2.2 顆粒崩塌 5 1.2.3 基因演算法-參考橢圓-理想曲面 7 1.3 論文架構 12 第二章 幾何坡面之理論架構 13 2.1 理想破壞曲面 13 2.2 土體形狀與形狀參數 15 2.3 穩定性分析 19 2.4 坡面穩定性之相位圖 25 第三章 實驗設置與方法 28 3.1 實驗設置 28 3.2 實驗儀器與材料 29 3.3 實驗流程與參數設定 33 3.4 數位影像處理 36 3.5 數值高程模型 38 第四章 實驗結果與討論 43 4.1 影像處理結果 43 4.2 數值高程模型 45 4.2.1 沙堆高程模型與崩塌範圍 45 4.2.2 崩塌前沙堆坡面之堆積分佈 49 4.3 破壞面建構 51 4.3.1 以基因演算法-參考橢圓-理想破壞曲面 (GA-ER-ICS) 建構破壞面 51 4.3.2 比較最小安全係數與最小破壞面積偏差率之情境 52 4.4 初始崩塌範圍之坡度 67 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

    Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7–17.
    Castellanos, A., Valverde, J. M., Pérez, A. T., Ramos, A., & Watson, P. K. (1999). Flow regimes in fine cohesive powders. Physical review letters, 82(6), 1156.
    Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner & R. L. Schuster (Eds.), Landslides: Investigation and mitigation (pp. 36–75). National Academy Press.
    Das, B. M., & Sivakugan, N. (2017). Fundamentals of geotechnical engineering. Cengage Learning.
    de Gennes, P.-G. (1999). Granular matter: a tentative view. Reviews of modern physics, 71(2), S374.
    Dunbavan, M. (1979). Sequential failure of granular slopes (Unpublished doctoral dissertation). James Cook University
    Farzaneh, O., Askari, F., & Ganjian, N. (2008). Three-dimensional stability analysis of convex slopes in plan view. Journal of Geotechnical and Geoenvironmental Engineering, 134(8), 1192–1200.
    Fowler, R., & Wyatt, F. (1960). The effect of moisture content on the angle of repose of granular solids. Australian J. Chem. Eng, 1, 5–8.
    Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
    Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in umbria, central italy. Earth and Planetary Science Letters, 279(3-4), 222–229.
    Huang, C.-C., & Tsai, C.-C. (2000). New method for 3d and asymmetrical slope stability analysis. Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 917–927.
    Hungr, O., Leroueil, S., & Picarelli, L. (2014). The varnes classification of landslide types, an update. Landslides, 11, 167–194.
    Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., & Locat, P. (2004). Toward preliminary hazard assessment using dem topographic analysis and simple mechanical modeling by means of sloping local base level. Landslides evaluation and stabilization. Balkema, 199–205.
    Jaeger, H. M., Nagel, S. R., & Behringer, R. P. (1996). Granular solids, liquids, and gases. Reviews of modern physics, 68(4), 1259.
    Kleinhans, M., Markies, H., De Vet, S., In’t Veld, A., & Postema, F. (2011). Static and dynamic angles of repose in loose granular materials under reduced gravity. Journal of Geophysical Research: Planets, 116(E11).
    Ko, C.-J., Wang, C.-L., Wong, H.-K., Lai, W.-C., Kuo, C.-Y., & Tai, Y.-C. (2021). Landslide scarp assessments by means of an ellipse-referenced idealized curved surface. Frontiers in Earth Science, 9, 733413.
    Komatsu, T. S., Inagaki, S., Nakagawa, N., & Nasuno, S. (2001). Creep motion in a granular pile exhibiting steady surface flow. Physical review letters, 86(9), 1757.
    Liu, C.-h., Jaeger, H., & Nagel, S. R. (1991). Finite-size effects in a sandpile. Physical Review A, 43(12), 7091.
    Morgenstern, N. (1967). Submarine slumping and the initiation of turbidity currents. Marine geotechnique, 3, 189–220.
    Nagel, S. R. (1992). Instabilities in a sandpile. Reviews of Modern Physics, 64(1), 321.
    Ostu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans SMC, 9, 62.
    Pitanga, H. N., Gourc, J.-P., & Vilar, O. M. (2009). Interface shear strength of geosynthetics: evaluation and analysis of inclined plane tests. Geotextiles and Geomembranes, 27(6), 435–446.
    Soille, P., et al. (1999). Morphological image analysis: principles and applications (Vol. 2) (No. 3). Springer.
    Spinewine, B., Capart, H., Larcher, M., & Zech, Y. (2003). Three-dimensional voronoï imaging methods for the measurement of near-wall particulate flows. Experiments in fluids, 34, 227–241.
    Tai, Y.-C., Ko, C.-J., Li, K.-D., Wu, Y.-C., Kuo, C.-Y., Chen, R.-F., & Lin, C.-W. (2020). An idealized landslide failure surface and its impacts on the traveling paths. Frontiers in Earth Science, 8, 313.
    Taylor, F. E., Malamud, B. D., Witt, A., & Guzzetti, F. (2018). Landslide shape, ellipticity and length-to-width ratios. Earth Surface Processes and Landforms, 43(15), 3164–3189.
    Terzaghi, K. (1950). Mechanics of landslides (berkeley volume). Geol. Soc. of Am., New York.
    Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11–33.
    Wang, C.-L., Ko, C.-J., Wong, H.-K., Pai, P.-H., & Tai, Y.-C. (2022). An approach for preliminary landslide scarp assessment with genetic algorithm (ga). Water, 14(15). Retrieved from https://www.mdpi.com/2073-4441/14/15/2400 doi: 10.3390/w14152400
    Yoshioka, N. (2003). A sandpile experiment and its implications for self-organized criticality and characteristic earthquake. Earth, planets and space, 55(6), 283–289.
    Zhang, T., Cai, Q., Han, L., Shu, J., & Zhou, W. (2017). 3d stability analysis method of concave slope based on the bishop method. International Journal of Mining Science and Technology, 27(2), 365–370.
    Zomaya, A. Y., & Teh, Y.-H. (2001). Observations on using genetic algorithms for dynamic load-balancing. IEEE transactions on parallel and distributed systems, 12(9), 899–911.
    柯奇均, 王福杰, 王子睿, & 戴義欽. (2020). 沙堆的週期性顆粒崩塌與坡面穩定性分析. 第 18 屆大地工程學術研究討論會.
    邱書逸. (2023). 沙堆上顆粒流崩塌過程與機制之探討. 國立成功大學水利及海洋工程學系碩士論文

    無法下載圖示 校內:2028-08-01公開
    校外:2029-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE