簡易檢索 / 詳目顯示

研究生: 顏維信
Yen, Wei-Hsin
論文名稱: 應用增強型灰狼最佳化演算法於居家服務型機器人之目標物多姿態抓取
Enhanced Grey Wolf Optimizer based Multiple Object Grasping Poses for Home Service Robot
指導教授: 李祖聖
Li, Tzuu-Hseng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 103
中文關鍵詞: 三維物體模型灰狼最佳化機器人抓取
外文關鍵詞: 3D object modeling, Grey Wolf Optimizer (GWO), Robot grasping
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了讓機器人具備抓取未知物品的能力,本論文利用RGB-D影像建立物體3D模型,然後提出增強型灰狼演算法,求出多個合適的目標抓取姿態。此方法可抓取多種形狀特殊之物品,物體的三維模型是利用Kinect的深度資訊來建立。首先,將一幀幀的深度資訊會被轉換成三維點雲圖,迭代最近點演算法(ICP)進行匹配,再追蹤Kinect的即時姿態,結合多個視角的資訊,以形成空間體積的表面,最後用光線投射的方式顯示三維模型,並以此作為迭代最近點演算法之比對參考。因物體三維模型的描述相當複雜,難以實作在機器人抓取上,本論文在建立物體三維模型後,更進一步將其簡化。首先將原本的三維模型轉換成三角網格,並將這些三角網格中的頂點,以三階段的最近鄰演算法進行分類。接著,以最小平方法近似出簡化的平面。最後,再以更有效率的方式來描述這些簡化的物體平面。在建立簡化的物體三維模型後,本論文提出增強型灰狼演算法(Enhanced Grey Wolf Optimizer, EGWO),針對一個物品,規劃多個抓取姿態,讓機器人的抓取策略更具彈性。因灰狼最佳化演算法(Grey Wolf Optimizer, GWO)的計算方法,與搜尋空間的原點有關連,若群體最佳解距離原點很遠,則表現不佳。而增強型灰狼最佳化演算法(EGWO)修正與原點有關的計算方式,並加入位置誤差項來保持演算法良好的探索與開發性能。位置誤差項是由上一刻與現在的位置差計算得出,若位置誤差大,則處於探索階段,若位置誤差小,則處於開發階段。由模擬與實驗結果所示,與GWO相比,EGWO可以得出較佳的抓取姿態,使得機器人能成功地抓取一個未知物品。

    The thesis proposes an Enhanced Grey Wolf Optimizer (EGWO) to learn multiple grasping poses of unknown objects for a home service robot. For accomplishing this task, a 3D model of an object should be established at first. The depth information obtained from Kinect is converted to 3D points in every frame and is matched by Iterative Closest Point (ICP) to track the pose of Kinect. The matched points are then integrated to a volumetric surface, and the result is presented by ray casting. However, the result of 3D object model is too complex to calculate grasping pose. So that a simplified method is proposed in this thesis. The original 3D object model is transferred to a triangle mesh firstly, and the triangle vertices are classified by three-stage nearest neighbor algorithm to find surfaces of the object. Therefore, the simplified surfaces can be constructed by the least square method and the object can be described by these simplified surfaces. After established a 3D object model, this thesis proposes Enhanced Grey Wolf Optimizer (EGWO) to learn multiple grasping poses. Due to the original Grey Wolf Optimizer (GWO) is highly corresponding with the origin of searching space, the performance will be influenced by the place of global optimal. The proposed EGWO solves the problem by eliminating the influence of the origin. In addition, it adds a position error term to maintain the good exploration and exploitation. The position error term is calculated by the difference between current and previous positions. If the difference is large, the algorithm forces more on exploration. Contrarily, the algorithm forces more on exploitation. Both the simulations and robotic experiments demonstrate that EGWO provides much better performance than GWO on learning multiple grasping poses and makes the home service robot successfully grasp unknown objects.

    Abstract Ⅰ Acknowledgement Ⅲ Contents Ⅳ List of Figures Ⅵ List of Tables X Abstract II Acknowledgements III Chapter 1 1 1.1 Motivation 1 1.2 Related Works 3 1.2.1 3D Object Modeling 3 1.2.2 Robotic Grasping 5 1.2.3 Grey wolf learning algorithm 6 1.3 Thesis Organization 8 Chapter 2 9 2.1 Introduction 9 2.2 3D Object Model Creation 10 2.2.1 Depth Map Conversion 10 2.2.2 Camera Tracking 11 2.2.3 Volumetric Integration 14 2.2.4 Ray Casting 16 2.3 Surfaces Extraction 20 2.3.1 Vertices clustering 21 2.3.2 Surface construction and description 31 2.3.3 The result of simplified object model 34 Chapter 3 36 3.1 Introduction 36 3.2 Grey Wolf Optimizer 37 3.3 Enhanced Grey Wolf Optimizer Algorithm 41 3.4 Task Description—Multiple Object Grasping Poses 48 3.4.1 Model of the robot end effector 48 3.4.2 Fitness Functions 50 3.5 Simulation Comparisons with GWO and EGWO 56 3.5.1 Classical functions 56 3.5.2 Grasping poses for 5 objects 59 Chapter 4 65 4.1 Introduction 65 4.2 Experimental Setup 66 4.2.1 Home service robot 66 4.2.2 Inverse kinematics 67 4.3 Experimental Results 73 Chapter 5 88 5.1 Conclusion 88 5.2 Future Works 89 Appendix I: All basic benchmark functions 91 Appendix II: The details of benchmark functions 95 References 98 Biography 102

    [1] N. G. Hockstein, J. P. Nolan, B. W. O'Malley, and Y. J. Woo, “Robotic Micro Laryngeal Surgery: a Technical Feasibility Study Using the daVinci Surgical Robot and an Airway Mannequin,” The Laryngoscope, vol. 115, no. 5, pp. 780-785, 2005.
    [2] S. Shamsuddin, L. I. Ismail, H. Yussof, N. I. Zahari, S. Bahari, H. Hashim,, and A, Jaffar, “Humanoid robot NAO: Review of Control and Motion Exploration,” in Proceeding of IEEE International Conference on Control System, Computing and Engineering, pp. 511-516, 2011.
    [3] S. Shamsuddin, H. Yussof, L. I. Ismail, S. Mohamed, F. A. Hanapiah, and N. I. Zahari, “Humanoid Robot NAO Interacting with Autistic Children of Moderately Impaired Intelligence to Augment Communication Skills,” Procedia Engineering, vol. 41, pp. 1533-1538, 2012.
    [4] F. Remondino and S. El-Hakim, “Image-based 3D Modeling: a Review,” Photogrammetric Record Journal, vol. 21, no. 115, pp. 269-291, 2006.
    [5] G. Zhang and Z. Wei, “A Novel Calibration Approach to Structured Light 3D Vision Inspection,” Optics and Laser Technology, vol. 34, no. 5, pp. 373-380, 2002
    [6] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach, “Hovercam: Interactive 3D Navigation for Proximal Object Inspection,” in Proceedings of the 2005 symposium on Interactive 3D graphics and games, pp. 73-80, 2005.
    [7] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3D Object Modeling and Recognition Using Local Affine-invariant Image Descriptors and Multi-view Spatial Constraints,” International Journal of Computer Vision, vol. 66, no. 3, pp. 231-259, 2006.
    [8] Q. Wu and H. Xu, “An Approach to Computer Modeling and Visualization of Geological Faults in 3D,” Computers and Geosciences, vol. 29, no. 4, pp. 503-509, 2003.
    [9] I. Baran and J. Popović, “Automatic Rigging and Animation of 3D Characters,” ACM Transactions on Graphics, vol. 26, no. 3, p. 72, 2007.
    [10] D. A. Guttentag, “Virtual reality: Applications and Implications for Tourism,” Tourism Management, vol. 31, no. 5, pp. 637-651, 2010.
    [11] G. Zheng, S. Gollmer, S. Schumann, X. Dong, T. Feilkas, and M. A. G. Ballester, “A 2D/3D Correspondence Building Method for Reconstruction of a Patient-specific 3D Bone Surface Model Using Point Distribution Models and Calibrated X-ray Images,” Medical Image Analysis, vol. 13, no. 6, pp. 883-899, 2009.
    [12] M. Wang, Y. Gao, K. Lu, and Y. Rui, “View-based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition,” IEEE Transactions on Image Processing, vol. 22, no. 4, pp. 1395-1407, 2013.
    [13] Y. Gao, M. Wang, R. Ji, X. Wu, and Q. Dai, “3-D Object Retrieval with Hausdorff Distance Learning,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 2088-2098, 2014.
    [14] P. Tang, D. Huber, B. Akinci, R. Lipman, and A. Lytle, “Automatic Reconstruction of As-built Building Information Models from Laser-scanned Point Clouds: A Review of Related Techniques,” Automation in Construction, vol. 19, no. 7, pp. 829-843, 2010.
    [15] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and Object Tracking for in-hand 3D Object Modeling,” The International Journal of Robotics Research, vol. 30, no. 11, pp. 1311-1327, 2011.
    [16] S. Al-Kheder, Y. Al-Shawabkeh, and N. Haala, “Developing a Documentation System for Desert Palaces in Jordan Using 3D Laser Scanning and Digital Photogrammetry,” Journal of Archaeological Science, vol. 36, no. 2, pp. 537-546, 2009.
    [17] S. El-Omari and O. Moselhi, “ Integrating 3D Laser Scanning and Photogrammetry for Progress Measurement of Construction Work,” Automation in Construction, vol. 18, no. 1, pp. 1-9, 2008.
    [18] I. Lenz, H. Lee, and A. Saxena, “ Deep Learning for Detecting Robotic Grasps,” The International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705-724, 2015.
    [19] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic Grasping of Novel Objects Using Vision,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 157-173, 2008.
    [20] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour, and S. Schaal, “Learning of Grasp Selection based on Shape-templates,” Autonomous Robots, vol. 36, no. 1-2, pp. 51-65, 2014.
    [21] J. Weisz and P. K. Allen, “Pose Error Robust Grasping from Contact Wrench Space Metrics,” in Proceeding of IEEE International Conference on Robotics and Automation, pp. 557-562, 2012.
    [22] J. Bohg and D. Kragic, “Learning Grasping Points with Shape Context,” Robotics and Autonomous Systems, vol. 58, no. 4, pp. 362-377, 2010.
    [23] A. Boularias, O. Kroemer, and J. Peters, “Learning Robot Grasping from 3D Images with Markov Random Fields,” in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1548-1553, 2011.
    [24] B. Cohen, S. Chitta, and M. Likhachev, “Single-and Dual-arm Motion Planning with Heuristic Search,” The International Journal of Robotics Research, vol. 33, no. 2, pp. 305-320, 2014.
    [25] S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, “Evolutionary Population Dynamics and Grey Wolf Optimizer,” Neural Computing and Applications, vol. 26, no. 5, pp. 1257-1263, 2015.
    [26] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a Gravitational Search Algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232-2248, 2009.
    [27] R. A. Formato, “Central Force Optimization: a New Nature Inspired Computational Framework for Multidimensional Search and Optimization,” in Proceeding of Nature Inspired Cooperative Strategies for Optimization, pp. 221-238, 2008.
    [28] W. T. Pan, “A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example,” Knowledge-Based Systems, vol. 26, pp. 69-74, 2012.
    [29] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
    [30] M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, “Using the Gray Wolf Optimizer for Solving Optimal Reactive Power Dispatch Problem,” Applied Soft Computing, vol. 32, pp. 286-292, 2015.
    [31] S. Mirjalili, “How Effective is the Grey Wolf Optimizer in Training Multi-layer Perceptrons,” Applied Intelligence, vol. 43, no. 1, pp. 150-161, 2015.
    [32] X. Song, L. Tang, S. Zhao, X. Zhang, L. Li, J. Huang, and W. Cai, “Grey Wolf Optimizer for Parameter Estimation in Surface Waves,” Soil Dynamics and Earthquake Engineering, vol. 75, pp. 147-157, 2015.
    [33] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison and A. Fitzgibbon, “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559-568, 2011.
    [34] P. J. Besl and H. D. McKay, “A Method for Registration of 3D Shapes,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.
    [35] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithm,” in Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 145-152, 2001.
    [36] Y. Chen and G. Medioni, “Object Modeling by Registration of Multiple Range Images,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 9-11, 1991.
    [37] B. Curless and M. Levoy., “A Volumetric Method for Building Complex Models from Range Images,” in Proceedings of Conference on Computer Graphics and Interactive on Techniques, pp. 303-312, 1996.
    [38] T. Sun, F. Xu, J. Lu, M. Yin, and X. Liu, “A Novel and Practical Algorithm for Generating 3D Volumetric Clouds,” in Proceedings of International Conference on Wireless Communications & Signal Processing, pp.1-5, 2015.
    [39] G. P. Styan, “Hadamard Products and Multivariate Statistical Analysis,” Linear Algebra and its Applications, vol. 6, pp. 217-240, 1973.
    [40] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming Made Faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, 1999.
    [41] M. Molga and C. Smutnicki, “Test Functions For Optimization Needs,” 2005. Available: http://dl.dadvarmarzieh.com/File/Booklet/13940824131547698.pdf
    [42] X.-S. Yang, “Test Problems in Optimization,” arXiv, preprint arXiv: 1008.0549, 2010. Available: https://arxiv.org/pdf/1008.0549.pdf
    [43] The Denavit Hartenberg Convention [Online]. Available: https://notendur.hi.is/pgg/DenavitHartenberg.pdf

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE