簡易檢索 / 詳目顯示

研究生: 王國慶
Wang, Kuo-Ching
論文名稱: 「主動式隔間水槽阻尼器」於雙層結構系統的減振效應
The Effect of APTD on theVibration Suppression of Two-Storied Structural Systems
指導教授: 丁舜臣
Ting, Shuenn-Chern
唐啟釗
Tang, Chii-Jau
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 96
中文關鍵詞: 主動式隔間水槽阻尼器位移回授係數位移延時係數
外文關鍵詞: feedback delay coefficient, Active-typed Partitioned Tank Damper, displacement feedback coefficient
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本論文研究「主動式隔間水槽阻尼器」(Active-typed Partitioned Tank Damper, APTD)裝置對於雙層結構系統的減振效應。APTD使用預設的操控參數控制外接空氣壓縮機的活塞位移,來調整水槽上方兩浮板之作用壓力,以影響浮板運動,達到主動控制水槽內流體運動,因此APTD對雙層結構的減振效應可被控制。
    本文以實驗量測分析APTD兩個操控參數對結構減振的效應:其一為位移回授係數,代表空氣壓縮機的活塞位移與結構系統的位移之比值,該係數受限於空氣壓縮機活塞的操作極限而有一定的限制;其二為位移延時係數,代表兩者開始振動的相位差值。除此之外,為了討論雙層結構系統配置APTD於不同層時的減振效應差異,本文使用實際觀察的地震資料,進行模擬試驗,以測試比較不同操控參數與配置位置等條件下的振動特性結果。
    本研究考慮配置APTD於第一層樓板、配置APTD於第二層樓板以及結構物不配置APTD等三組實驗,在簡諧外力強制振動下,改變APTD位移回授係數與位移延時係數,共進行133組試驗,以分析其最佳的操控參數組合條件,及其減振的效應。由試驗結果顯示:位移回授係數在空氣壓縮機的操作範圍限制下,與結構系統的減振效應成正比關係;而位移延時係數與減振效應之關係則呈現週期性變化。至於在APTD配置位置對減振效應的比較,由試驗結果可知APTD配置於第二層的減振效應優於配置於第一層。而這項結論也可由地震模擬測試中得到相同的結果。

    Abstract

    This thesis studied the effects on vibration suppression of a two-storied structural system installed with the Active-Control Partitioned Tank Damper (APTD). To control an APTD for a vibrating structural system is through setting up some controlling parameters to adjust the piston displacement of an external air compressor, which is connected to APTD by a hose so that the acting pressure on the floating covers of APTD tanks and, consequently, the flow pattern between these two tanks of APTD can be controlled.
    In the present experimental study, two dominant APTD controlling parameters were varied independently to analyze the vibration suppression of the structural system. The first dominant control parameter is the displacement feedback coefficient which is represented for the displacement ratio of air pump and the structural system. However, the value of this coefficient has its restriction due to the limited displacement of the piston movement inside the air compressor. The second control parameter is the feedback delay coefficient, which is defined by the time phase of the piston of air compressor lagging behind that of the structural system. Besides, the different damping effects subjected to two mounting locations of APTD on the two-storied structure were also discussed by the simulation tests with dynamic measurement in Laboratory according to the field data of real earthquake observation.
    Totally 133 tests using harmonically exciting forced vibration were performed in this study to suggest the optimal condition in combination with two APTD control parameters, after examination of two mounting locations of APTD or without APTD in use. The result showed that the displacement feedback parameter under the operation limit is proportional to the damping ratio of this structural system. On the other hand, the feedback delay coefficient has periodic change with damping. As to the location of installing APTD, it is found that the installation on the second floor of the structural system gets the best damping effect. This conclusion was confirmed as well from the simulated earthquake test.

    目 錄 中文摘要 i Abstract ii 表目錄 v 圖目錄 vi 照片目錄 x 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 2 1-3 研究方法 3 1-4 本文組織 4 第二章 相關理論 6 2-1 結構系統運動方程式 6 2-2 模態分析 7 第三章試驗研究 12 3-1 試驗模型 12 3-2 儀器設備 13 3-2-1 震動台系統 13 3-2-2 擷取資料儀器 15 3-2-3 程式控制系統修正 16 3-2-4 儀器率定 17 3-3 試驗方法與步驟 19 3-3-1 試驗條件 20 3-3-2 結構系統基本特性試驗 20 3-3-3 回授控制方式 21 3-3-4 前置試驗 22 3-3-5 試驗步驟 24 3-4 地震模擬試驗 24 3-4-1 實際地震案例 24 3-4-2 地震模擬測試 25 第四章 結果與討論 26 4-1 系列1試驗案例 26 4-2 系列2試驗案例 28 4-3 APTD配置位置比繳 29 4-4 APTD在地震振動下之效能分析 30 第五章 結論與建議 32 5-1 結 論 32 5-2 建 議 32 參考文獻 34

    參考文獻
    1. Fujino, K. ; Tamura, Y. ; Sato, T. (1990), “Wind-Induced Vibration of Tower and Practical Applications of Tuned Sloshing Damper,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, pp.263-272。
    2. Gao, H.; Kwok, K.C.S.; Samali, B. (1997), “Optimization of tuned liquid column dampers,” Engineering Structures, Vol. 19 n 6 pp. 476-486。
    3. Hitchcock, P.A.; Kwok, K.C.S.; Watkins, R.D.; Samali, B.(1997), “Characteristics of liquid column vibration absorbers (LCVA),” Engineering Structure, Vol. 19, pp.126-134。
    4. Koh, C.G.; Mahatma, S.; Wang, C. M. (1995), “Reduction of structural vibrations by multiple-mode liquid dampers,” Engineering Structures, Vol. 17, pp.122-128。
    5. Kwok, K. C. S.; Samali, B. (1995), “Performance of tuned mass dampers under wind loads,” Engineering Structure, Vol. 17, pp.655-667。
    6. Sakai, F.; Takaeda, S.; Tamaki, T. (1989), “Tuned Liquid Column Damper:New Type Device for Suppression of Building Vibration,” Proceeding International Conference on High Rise Building, Nanjing, China, pp.926-931。
    7. Shyu, K. L.; Hung, R. J. (1995), “Study on Tuned Liquid Damper for Reducing Vibration of Structure,” Journal of Society of Naval Architects and Marine Engineers, R.O.C, Vol. 14, No. 2.。
    8. Sun, L. M.; Fujino, Y. (1994), “A Semi-Analytical Model for Tuned Liquid Damper (TLD) with Wave Breaking,” Journal of Fluids and Structures, Vol. 8, pp.471-488。
    9. Symans, Michael D.; Constantinou, Michael C. (1999), “Semi-active control systems for seismic protection of structures:a state-of-the-art review,” Engineering Structures, Vol. 21, pp. 469-487。
    10. Tamura, Yukio; Kohsaka, Ryuichi; Nakamura, Osamu; Miyashita, Koh-ichi; Modi, Vinod J. (1996), “Wind-induced responses of an airport tower –efficiency of tuned liquid damper,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 65,pp.121-131。
    11. Warnitchai, P.; Pinkaew, T. (1999), “Modeling of liquid sloshing in rectangular tanks with flow-dampening devices,” Engineering Structural, ASME, Vol. 21 NO. 7 ,pp.593-600。
    12. Won, A. Y. J., Piers J. A. and Haroun, M. A. (1996). “Stochastic seismic performance evaluation of tuned liquid column dampers”, Earthquake Engineering and Structural Dynamics, 25, 1259-1274.
    13. Wu, Jong-Shyong; Hsieh, Mang (2002), “Study on the dynamic characteristic of a U-type tuned liquid damper,” Ocean Engineering, Vol. 29, pp. 689-709。
    14. Xue, S.D.; Ko, J.M.; Xu, Y.L.(2000),“Tuned liquid column damper for suppressing pitching motion of structures,” Engineering Structures, Vol. 23, pp. 1538-1551。
    15. Xu, Y.I.; Kwok, K.C.S. (1994), “Semi-Analytical Method for Parametric Study of Tuned Mass Dampers,” Journal of Sturctural Engineering, Vol. 120, No. 3. , pp.747-764。
    16. 林威宏(1998),“含流動液體之阻尼器對結構的減振效應”,國立成功大學碩士論文,民國87年6月。
    17. 曾申融(2000),“「浮蓋板與儲水槽」動力特性之試驗研究”,國立成功大學碩士論文,民國89年6月。
    18. 李國彰(2000),“「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應”,國立成功大學碩士論文,民國89年6月。
    19. 黃勝弘(2002),“「隔間容器阻尼器」動力特性之試驗研究”,國立成功大學碩士論文,民國91年6月。
    20. 蘇建瑋(2003),“「主動式隔間水槽阻尼器」操控模式對結構減振之效應”,國立成功大學碩士論文,民國92年5月。
    21. 廖建能(2003),“「隔間水槽阻尼器」調控參數對結構減振之效應”,國立成功大學碩士論文,民國92年6月。

    下載圖示 校內:立即公開
    校外:2005-09-09公開
    QR CODE