簡易檢索 / 詳目顯示

研究生: 吳少棠
Wu, Shao-Tang
論文名稱: 以原子層沉積研製常關式氧化鋁金氧半高電子遷移率電晶體之研究
An Investigation of Normally Off Al2O3 MOS-HEMT by Using Atomic Layer Deposition
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 91
中文關鍵詞: 高電子遷移率電晶體閘極掘入原子層沉積三氧化二鋁
外文關鍵詞: HEMT, enhancement mode, gate recess, ALD, Al2O3
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究以閘極掘入式的製程製作我們的增強型高電子遷移率電晶體,由於閘極蝕刻的影響所造成的缺陷,導致漏電流的增高,以及電流特性下降,我們便利用原子層系統沉積三氧化二鋁,藉由此系統的高品質薄膜及它的高能障來達到抑止漏電流產生的效能,以及元件上的減少缺陷密度。
    藉由成長三氧化二鋁達到高開關電流比,低漏電流的增強式高電子遷移率電晶體。
    因此我們以原子層沉積系統成長三氧化二鋁以及閘極掘入技術完成增強型高電子遷移率電晶體。元件臨界電壓成功提升至0.83 V,最大電流密度達到502 mA/mm,最大轉換電導值達到142 mS/mm,次臨界擺幅與電流開關比為106 mV/dec與5.67×108,閘極漏電流有效降低至 1.08 × 10-6 mA/mm。

    In this research , we have completely frabicated the enhancement mode MOS HEMT by using gate recess process.Since the gate recess process cause the surface defect and surface trap state,induce the gate leakage and lowing the current characteristic . Thus , we use the ALD system to deposite Al2O3 to be our gate dielectic. Using the ALD high quality film and high band gap of Al2O3 to supprese the surface trap density on device and lowing leakage. To frabricate the high on/off ratio , low leakage enhancement mode MOS HEMT .
    By adding Al2O3 as gate dielectric, the maximum drain current density of the E-mode MOSHEMTs achieves as high as 502 mA/mm at VG = 5V.maximum conductance is 142 mS/mm ,subthreshold swing is 106 mV/decade ,on/off ratio can increase to 5.67×108 ,and gate leakage is lowing to 1.08 × 10-6 mA/mm

    中文摘要 ---I Abstract------ II 誌謝----IV List of figures-------- X List of tables--------- XI Chapter 1 Introduction--1 1.1 Background--1 1.2 Motivation--5 1.3 Organization--7 Chapter 2 Heterostructure of AlGaN/GaN--8 2.1 Lattice structure-- 8 2.2 AlGaN/GaN Heterostructure-- 10 2.2.1 Spontaneous polarization effect-- 10 2.2.2 Piezoelectric polarization---13 2.2.3 Two-dimensional electron gas (2DEG)--18 Chapter 3 Experiments and Device Fabrication---26 3.1 Gate-recess process---26 3.1.1 Wet etching---26 3.1.2 Dry etching---28 3.1.3 Etching parameter---31 3.2 ALD deposition of Al2O3---34 3.2.1 Properties of Al2O3---34 3.2.2 ALD system and experiment---36 3.2.3ALD of Al2O3 on Si-Substrate---36 3.3 Experimental equipment---39 1.3.1 Spin coater---39 1.3.2 Mask aligner---40 1.3.3 ICP plasma etching---41 1.3.4 E-gun evaporator---42 1.3.5 RTA system---43 1.3.6 ALD system---44 1.3.7 Semiconductor parameter analyzer---44 3.4.Device fabrication---45 1.3.8 Mesa isolation---46 1.3.9 Source/drain formation---47 1.3.10 Gate-recess etching---48 1.3.11 Al2O3 gate dielectric deposition---49 1.3.12 Gate formation---50 1.3.13 SiNx passivation layer deposition---50 Chapter 4 Results and Discussion---55 4.1 Properties of ALD Al2O3 amd CVD SiNx---55 4.1.1 TEM image---55 4.2 MOSHEMTs with and without passivation performance ---60 4.2.1 Saturation drain current---60 4.2.2 Transfer characteristics and transconductance ----63 4.2.3 Subthreshold swing and on-off ratio---66 4.2.4 Gate leakage current---68 4.3 MOS HEMT of proreties with passivation layer ---70 4.3.1 Gate leakage current---70 4.3.2 Pulse I-V characteristics---73 4.3.3 C-V measurement---80 Chapter 5 Conclusion---82 References---85

    [1] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 586-590, Mar. 2001.
    [2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 161-163, Apr. 1999.
    [3] L. F. Eastman, and U.K. Mishra, “The Toughest Transistor Yet [GaN transistors],” IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002.
    [4] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–Nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, Feb. 2000.
    [5] P. Moens, A. Banerjee, M. Uren, M. Meneghini, S. Karboyan, I. Chatterjee, P. Vanmeerbeek, M. Cäsar, C. Liu, A. Salih, E. Zanoni, G. Meneghesso, M. Kuball, and M. Tack, “Impact of buffer leakage on intrinsic reliability of 650 V AlGaN/GaN HEMTs,” in Proc. IEEE Int. Electron Device Meeting (IEDM), 2015, p. 903. R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Lett. , vol. 31, no. 12, pp. 1383-1385, Dec. 2010.
    [6] P. Lagger, M. Reiner, D. Pogany, and C. Ostermaier, “Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress/recovery experiments,” IEEE Trans. Electron Devices, vol. 61, no. 4, pp. 1022–1030, Apr. 2014, doi: 10.1109/TED.2014.2303853. R. K. Tyagi, A. Ahlawat, M. Pandey and S. Pandey, “An analytical two-dimensional model for AlGaN/GaN HEMT with polarization effects for high power applications,” Microelectron. J., vol. 38, pp. 877-883, 2007.
    [7] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,” IEEE Electron Device Lett. , vol. 26, no. 7, pp. 435-437 Jul. 2005.
    [8] W. B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electronics Letters, vol. 41, no. 7, pp. 449-450, Mar. 2005.
    [9] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 111-113, Feb. 2010.
    [10] L. Y. Su, F. Lee, and J. J. Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 160-165, Feb. 2014.
    [11] A. B. Chen and A. Sher, Semiconductor Alloys: Physics and Materials Engineering, Springer US, 1995, ch.1.1.
    [12] M. D. Joesten, J. L. Hogg and M. E. Castellion, The World of Chemistry, Cengage Learning, 2006, ch.5.2.
    [13] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, and H. Umezawa, “Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance,” Appl. Phys. Lett., vol. 92, 112107, 2008.
    [14] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. 10024-11027, Oct. 1997.
    [15] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 15 Mar. 1999.
    [16] H. X. Guang, Z. D. Gang, J. D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chinese Physics B, vol. 24, no. 6, 067301, 2015.
    [17] S. C. Liu, B. Y. Chen, Y. C. Lin, T. E. Hsieh, H. C. Wang, and E. Y. Chang, "GaN MIS-HEMTs With Nitrogen Passivation for Power Device Applications," Ieee Electron Device Letters, vol. 35, pp. 1001-1003, Oct 2014.W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, and M. Dutoit, “Method for extracting deep submicrometer MOSFET parameters,” Electron Lett., vol. 31, no. 9, pp. 762-764, Apr. 1995.
    [18] M. Köehler, I. f. Chemie und Biotechnik, Isotropic Etching, Springer US, 2014.
    [19] Z. Dong, R. Hao, Z. Zhang, and Y. Cai, "Impact of N − plasma treatment on the Current collapse of ALGAN/GAN HEMTs," in IEEE International Conference on Solid-State and Integrated Circuit Technology, 2014.
    [20] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1001–1003, Oct. 2014.
    [21] J. J. Huang, P. W. Sze, S. K. Lin, W. C. Lai, Y. H. Wang and M. P. Houng, “AlGaN/GaN MOSHFET with a SiO2 Gate by Liquid Phase Deposition,” Phys. Scr., vol. T114, pp. 94-96, 2004.
    [22] C. Tang, G. Xie, and K. Sheng, “Enhancement-mode GaN-on-Silicon MOS-HEMT using pure wet etch technique,” in Proc. Int. Symp. Power Semiconductor Devices IC’s, Hong Kong, May 2015, pp. 233–236
    [23] Y. Chang, Y. Lee, Y. Chiu, T. Lin, S. Wu, H. Chiu, J. Kwo, Y. Wang and M. Hong, "MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN," Cryst. Growth, vol. 301, pp. 390-393, 2007.
    [24] P. D. Ye, Y. Xuan, Y. Q. Wu, and M. Xu, “Atomic-layer deposited high-k/III-V metal-oxide-semiconductor devices and correlated empirical model,” in Fundamentals of III-V Semiconductor MOSFETs, S. Oktyabrsky, P. D. Ye, Eds. New York, NY, USA: Springer, 2010, pp. 173–191.
    [25] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, M. Hong, Y. N. Chiu, J. Kwo and Y. H. Wang, “Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN,” Appl. Phys. Lett., vol. 90, no. 23, pp. 232904, 2007.
    [26] H. C. Chiu, C. W. Lin, C. H. Chen, C. W. Yang, C. K. Lin, J. S. Fu, L. B. Chang, R. M. Lin, and K. P. Hsueh, “Low Hysteresis Dispersion La2O3 AlGaN/GaN MOS-HEMTs,” J. Electrochem. Soc., vol. 157, no. 2, pp.160-164, 2010.
    [27] S.H. Liu, S. Yang, Z.K. Tang, Q.M. Jiang, M.J. Wang, and K.J. Chen, "Performance Enhancement of Normally-Off Al2O3/AlN/GaN MOSChannel-HEMTs with an ALD-Grown AlN Interfacial Layer," Proc. Int. Symp. Power Semicond. Dev. and ICs. Jun. 15-19, pp. 362-365, 2014.O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, “Gate-first AlGaN/GaN HEMT technology for high-frequency applications,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1254–1256, Dec. 2009.
    [28] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, “AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157 no. 10, pp. 947-951, 2010.
    [29] B. Heying, I. P. Smorchkova, R. Coffie, V. Gambin, Y. C. Chen, W. Sutton, T. Lam, M. S. Kahr, K. S. Sikorski, and M. Wojtowicz, “In situ SiN passivation of AlGaN/GaN HEMTs by molecular beam epitaxy,” Electron. Lett., vol. 43, no. 14, pp. 779–780, Jul. 2007.
    [30] S. Basu, P. K. Singh, J. J. Huang and Y. H. Wang, “Liquid-Phase Deposition of Al2O3 Thin Films on GaN,” J. Electrochem. Soc., vol. 154, no.12, pp. 1041-1046, 2007.
    [31] S. Karmalkar and U. K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Trans. Electron Devices, vol. 48, no. 8, pp. 1515–1521, Aug. 2001.
    [32] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric,” IEEE Electron Device Lett., vol. 21, no. 41, pp. 181-183, Apr. 2000.
    [33] P. D. Ye, B. Yang, K. K. Ng and J. Bude, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett. vol. 86, pp. 063501, 2005.
    [34] Y. Shi, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, J. Li, C. Zhao, S. Li, Y. Zhou, H. Gao, Q. Sun, H. Yang, J. Zhang, W. Chen, Q. Zhou, B. Zhang, and X. Liu, “Normally OFF GaN-on-Si MISHEMTs fabricated with LPCVD-SiNx passivation and high-temperature gate recess,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 614–619, Feb. 2016.
    [35] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, “Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess,” in Proc. IEEE Int. Electron Devices Meeting, Washington, DC, USA, Dec. 2015.
    [36] J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, May 2014.
    [37] T. Imada, M. Kanamura, and T. Kikkawa, “Enhancement-mode GaN MIS-HEMTs for power supplies,” in Proc. Int. Power Electron. Conf., Sapporo, Japan, Jun. 2010.
    [38] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1001–1003, Oct. 2014.
    [39] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-mode GaN MIS-HEMTs with n-GaN/ i-AlN/n-GaN triple cap layer and high-k gate dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 189–191, Mar. 2010.
    [40] Y. Shi, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, J. Li, C. Zhao, S. Li, Y. Zhou, H. Gao, Q. Sun, H. Yang, J. Zhang, W. Chen, Q. Zhou, B. Zhang, and X. Liu, “Normally OFF GaN-on-Si MISHEMTs fabricated with LPCVD-SiNx passivation and high-temperature gate recess,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 614–619, Feb. 2016.
    [41] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov

    無法下載圖示 校內:2020-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE