簡易檢索 / 詳目顯示

研究生: 林威廷
Lin, Wei-Ting
論文名稱: 雙饋式風機及風場之調頻控制策略
Frequency Control Strategies for DFIG Wind Turbines and Wind Farms
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 發電餘裕雙饋式風機頻率控制
外文關鍵詞: DFIG, reserve, frequency control
相關次數: 點閱:46下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾十年來,歐美各國風場容量成長驚人,隨著風場在電力系統中佔比增高,未來風場將會逐漸取代傳統火力機組。若風場不具備負載頻率控制(load frequency control,LFC)的調頻功能,一旦傳統火力機組被風場取代之後,系統調頻能力可能會不足。本文提出之雙饋式風機調頻架構,經由偵測系統頻率誤差訊號及風機發電餘裕,對風機功率命令值做出修正,以達到調頻的目的。經由模擬驗證,確實有效提高頻率穩定性,且能改善傳統機組響應。本文利用變異數做為比較負載變動及風場出力變動的指標,做為判定執行風場調頻的參考,使之兼顧風場調頻模式及最大功率輸出之效能。經由模擬驗證,在獨立系統及互聯系統中,利用變異數做為啟動風場調頻的判別參考能有效降低頻率誤差及區域控制誤差量,改善傳統機組響應,並在調頻模式中有效提升風場發電量。

    In recent decades, there are tremendous growing of wind farm capacities in the Europe and U.S. . With the large penetration of wind power into the system, the traditional fossil fuel unit is being replaced by the wine turbine. If wind turbines or wind farms do not have the function of load frequency control (LFC) , the capability of frequency regulation for power system may become insufficient after the traditional fuel unit be replaced with the wind farms.
    To enhance system’s frequency regulation capability, the strategy of frequency regulation provided from doubly-fed induction generator (DFIG) is proposed by modifying
    the power command of the wind turbine with frequency response signal of the power system. Simulation results show that the frequency regulation and responses of the
    traditional units are improved effectively.
    To a certain extent, we also consider both sides of frequency regulation and maximizing energy production by accessing the variations of load and output fluctuations
    of wind farms. Simulation results also show that the proposed method not only effectively reduces frequency error in the isolated system or area control error in the interconnected system, but also improve the energy production of wind farms.

    目 錄 摘 要 ............................................... I 英文摘要 ............................................ II 誌 謝 ............................................... IV 目 錄 ................................................ V 表 目 錄 ............................................ IX 圖 目 錄 ............................................. X 符號索引 ............................................ XV 第一章 緒論 ..................................... .... 1 1.1 研究背景與動機 ................................... 1 1.2 文獻回顧 ......................................... 1 1.3 本研究之貢獻 ..................................... 2 1.4 本文架構 ......................................... 3 第二章 傳統機組頻率控制及系統調頻改良指標簡介 ........ 5 2.1 前言 ............................................. 5 2.2 LFC 基本原理 ..................................... 5 2.3 雙區域系統之模型架構 ............................. 9 2.4 電力系統改良指標 ................................ 14 2.4.1 頻率偏差值及ACE 的RMS 值 ...................... 14 2.4.2 傳統機組反轉變動點 ............................ 15 2.5 風場以最大功率輸出併入電網測試 .................. 16 2.6 本章討論 ........................................ 20 第三章 單部風機平穩實功控制 ......................... 21 3.1 前言 ............................................ 21 3.2 實功平穩輸出模式 ................................ 21 3.3 改良型線性斜率控制模式 .......................... 24 3.4 旋角控制模式..................................... 27 3.5 單部風機實功控制策略 ............................ 30 3.6 結論 ............................................ 33 第四章風場調頻機制 .................................. 34 4.1 前言 ............................................ 34 4.2 風機調頻概念及原理 .............................. 35 4.3 風機發電餘裕(RESERVE)設定策略 ................... 37 4.4 變動式SPEED DROOP 調頻控制特性 .................. 43 4.5 本章結論 ........................................ 54 第五章 風場出力限制及變異數判斷法 ................... 56 5.1 前言 ............................................ 56 5.2 風場出力升降限制 ................................ 57 5.3 變異數判斷法 .................................... 61 5.4 利用變異數判斷法做最大功率與調頻模式切換 ........ 66 5.5 風速變動對於變異數判斷法之影響 .................. 71 5.6 結論 ............................................ 74 第六章 將風場調頻控制應用於互聯系統 ................. 76 6.1 前言 ............................................ 76 6.2 將風場調頻應用於互聯系統之評估 .................. 76 6.2.1 案例一:區域一容量與區域二相近 ................ 79 6.2.2 案例二:區域一容量小於區域二 .................. 84 6.2.3 案例三:區域一容量大於區域二 .................. 88 第七章 結論與未來研究方向 ........................... 95 7.1 結論 ............................................ 95 7.2 未來研究方向 .................................... 96 參考文獻 ............................................ 97 作者簡介 ........................................... 101

    參考文獻
    [1] Changling Luo, H.Golestani Far, H. Banakar, Pin-Kwan Keung,Boon-Teck Ooi, “Estimation of Wind Penetration as Limited by Frequency Deviation,” IEEE Transactions on Energy Conversion, Vol. 22, Issue 3, Page(s):783-791, September 2007.
    [2] N. Horiuchi, T. Kawahito, “Torque and Power Limitations of Variable Speed Wind Turbines Using Pitch Control and Generator Power Control,” Power Engineering Society Summer Meeting, vol.1, Page(s):638-643, July 2001.
    [3] Changling Luo, H. Banakar, Shen Baike, Boon-Teck Ooi ,
    “Strategies to Smooth Wind Power Fluctuations of Wind Turbine Generator,” IEEE Transaction on Energy Conversion, Volume 22, Issue 2, Page(s):341-349, June 2007.
    [4] 尹耀慶、張簡樂仁,“改良式線性斜率法以平穩雙饋式風機之
    實功率輸出,” 第二屆台灣風能學術研討會,2007年12月
    [5] 尹耀慶,實功控制策略應用於雙饋式風機及風電廠,國立成
    功大學碩士論文,民國九十七年六月。
    [6] L.-R. Chang-Chien, C.-M. Hung, Y.-C. Yin, “Dynamic Reserve Allocation for System Contingency by DFIG Wind Farm,” IEEE Transactions on Power System, Vol. 23, Issue 2, Page(s):729-736, May 2008.
    [7] L.-R. Chang-Chien, C.-M. Hung, W.-T. Lin, “Frequency
    Response Evaluation of a DFIG-Penetrated Power System,” 第
    三屆台灣風能學術研討會,2008年12月
    [8] H.Sassat, Power System Analysis, 2nd ed. McGraw-Hill, 2002.
    [9] P.Kundur, Power System Stability and Control, 1st
    ed.McGraw-Hill, 1994.
    [10] H.-S. Park, K.-J.g Kim, “A study on AGC scheme based on real time frequency characteristics,” 43rd International Universities Power Engineering Conference, UPEC 2008,Page(s):1 – 5, 1-5 Sept. 2008.
    [11] S. Gonzalez-Hernandez, E. Moreno-Goytia, O. Anaya-Lara,“Analysis of wide area integration of dispersed wind farms using multiple VSC-HVDC links,” 13th Power Electronics and Motion Control Conference, EPE-PEMC 2008, Page(s):1784 – 1789, 1-3 Sept. 2008.
    [12] Alan Mullane, Mark O’Malley, “The Inertial Response of Induction-Machine-Based Wind Turbines,” IEEE Transactions on Power System, Vol. 20, pp. 1496-1503, August 2005.
    [13] 洪志旻,以雙饋式風機之頻率響應模型改善系統頻率之運轉,
    國立成功大學碩士論文,民國九十六年六月。
    [14] C. M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK, Prentice-Hall, NJ, USA, 1998.
    [15] R.G. de Almeida, E.D. Castronuovo, J.A.P. Lopes, “Optimum Generation Control in Wind Parks When Carrying Out System Operator Requests,” IEEE Transactions on Power Systems, Vol. 21,No. 2, pp. 718-725, May 2005.
    [16] Abo Khalil, A.G, Dong Choon Lee, Se-Hyun Lee, “Grid
    Connection of Doubly-Fed Induction Generators in Wind Energy Conversion System,” Power Electronics and Motion Control Conference, IPEMC, CES/IEEE 5th International, Vol. 3, Page(s):1-5, Aug. 2006.
    [17] R. Cardenas, R. Pena, G. Asher and J. Clare “Control Strategies of Enhanced Power Smoothing in Wind Energy Systems Using a Flywheel Driven by Vector Controlled Induction Machine,”IEEE Trans. Indus. Electron., vol: 48, pp. 625–635, 2001.
    [18] L. Ran, J.R. Bumby, P.J. Tavner, “Use of Turbine Inertia for Power Smoothing of Wind Turbines with a DFIG,” 11th International Conference on Harmonics and Quality of Power,pp. 106-111, September 2004.
    [19] A. Schick, W. Wefelmeyer, “Prediction in Moving Average Processes,” Journal of Statistical Planning and Inference, Vo.138, Issue 3, Pages 694-707, March 2008.
    [20] Zhengyan Lin, Degui Li, “Strong Approximation for Moving Average Processes Under Dependence Assumptions,” Acta Mathematicl Scientia, Vol. 28, Issue 1, Pages 217-224, January 2008
    [21] The Mathworks, DSP Blockset for Use with Simulink , Version 5, July 2002.
    [22] W. Qiao, R.G. Harley, “Grid Connection Requirements and Solutions for DFIG Wind Turbines,” IEEE Energy 2030
    Conference, ENERGY 2008 , Page(s):1 – 8, 17-18 Nov. 2008.
    [23] M. Tsili, Ch. Patsiouras, S. Papathanassiou, “grid code requirements for large wind farms: a review of technical regulations and available wind turbine technologies,” European Wind Energy Conference & Exhibition Brussels Expo, Belgium,31 March - 3 April 2008.
    [24] McClave , “Statistics for Business and Economics,” 10th ed, 華泰文化 , 7 May 2007.
    [25] 桂人傑,“變速風機之控制系統,”精密製造與新興能源機械技術專輯,機械工業雜誌,民國九十五年五月。
    [26] L.M. Fernndez, C.A. Garca, F. Jurado, J. R. Saenz, “Control System of Doubly Fed Induction Generators Based Wind Turbines with Production Limits,” IEEE International
    Conference on Electric Machines and Drives, pp. 1936-1947,
    May 2005.
    [27] G. Lalor, J. Ritchie, S. Rourke, D. Flynn, M.J. O'Malley,“Dynamic Frequency Control with Increasing Wind Generation,”IEEE Power Engineering Society General Meeting, Vol. 2, pp.1715-1720, June 2004.
    [28] Stephen J. Chapman, Electric Machinery Fundamentals 3/E,McGraw-Hill, 1999.
    [29] I. Cadirci, M. Ermis, “Double-Output Induction Generator Operating at Sub-synchronous and Super-synchronous Speeds,”IEE Proceedings- Electric Power Applications, Vol. 139, No. 5,pp. 429-442, September 1992.
    [30] 張智星,MATLAB 程式設計,清蔚科技股份有限公司、鈦思
    科技股份有限公司,民國九十三年九月。

    下載圖示 校內:2014-07-07公開
    校外:2014-07-07公開
    QR CODE