研究生: |
羅炎國 Ro, En-Go |
---|---|
論文名稱: |
以InGaAs和InGaAsP為通道的磷化銦為基礎之高電子移動率電晶體的研究 Investigation of InP-based high electron mobility transistor using InGaAs and InGaAsP channel |
指導教授: |
許渭州
hsu, Wei-Chou |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 複合型的通道 、漸變式通道 、砷化銦鎵 、磷化砷銦鎵 |
外文關鍵詞: | triple channel, graded channel, InGaAs, InGaAsP |
相關次數: | 點閱:104 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們成功的以”未摻雜的覆蓋層(Undoped cap layer)”及”複合型的通道(triple channel)”來改善晶格匹配的磷化銦場效電晶體的崩潰特性。 藉由使用未摻雜的覆蓋層,我們可以在閘極和汲極間得到較低的電場。藉由其較低的電場,可以降低元件發生紐結現象(kink effect)。而藉由使用複合型通道,可以結合磷化銦(比砷化銦鎵在高電場時有較高的載子移動率和較高的能隙)和砷化銦鎵(低電場時有較高尖端的載子移動率)的好處。此外,結合磷化銦(1.34 eV)和磷化砷銦鎵(0.8 eV)可以有效的增加通道能隙。實驗結果證明崩潰特性可以從8 V改善到16.6 V(未摻雜的覆蓋層)及18.1 V(複合型的通道)。
另外,藉由”使用漸進式通道”及”假晶性通道”結構來改善磷化銦場效電晶體的高頻特性.對於晶格匹配的磷化銦場效電晶體而言,使用漸進式通道可以使得載子被侷限通道的底部,進而降低表面散射和內部電場.對於我們晶格匹配的磷化銦場效電晶體而言使用假晶性通道也可以增加載子侷限及降低載子有效質量。實驗的結果也顯示,fT的高頻特性可以從15.2 GHz 改善到21.2 GHz (漸進式通道) 和20.5GHz (假晶型通道)。
In this paper, we have successfully improved the breakdown characteristics of InP lattice matched HEMT by using the undoped cap layer and triple channel respectively. By using undoped cap layer we can reduce the electric field between drain and gate. Due to its lower electric field, kink effect can be reduced. By using triple channel, we can combine the advantages of InP (higher mobility in high field and larger bandgap than InGaAs) and InGaAs (high peak mobility in low field). Besides, InP (1.34 eV) and InGaAsP (0.8 eV) layers can increase effective channel bandgap when compared to InGaAs (0.75 eV) channel. Our experiments show that the breakdown voltage can be improved from 8 V (our lattice match HEMT) to 16.6 V (undoped cap HEMT) and 18.1 V (triple channel HEMT).
In addition, we have also improved the microwave performance of our InP lattice matched HEMT by using the graded channel and pseudomorhpic respectively. Comparing with our InP lattice matched HEMT, the graded channel can confine carriers at the bottom of the channel thus reduce the interface scattering and electric field. Comparing with our InP lattice matched HEMT, pseudomorhpic HEMT can also improve the performances because of its better carrier confinement and lower effective carrier mass. Our experiments show fT can be improved from 15.2 GHz (InP lattice matched HEMT) to 21.2 GHz (graded channel) and 20.5GHz (pseudomorphic).
[1] M. Matloubain, L. M. Jelloian, M. Lui, T. Lui, M. A.Thompson, “Ultra-high breakdown high-performance AlInAs/GaInAs/InP power HEMTs,” IEDM, pp. 915-917, Dec. 1993.
[2] S. Asachi, “Physical properties of Ⅲ-Ⅴ semiconductor compounds”, chapter 6, Wiley ineterscience publication, 1992.
[3] M. Wojtowicz, R. Lai, D. C. Streit, G. I. NG, T. R. Block, K. L. Tran, P. H. Lin, A. K. Freudenthal, R. M. Dia, “0.10 μm graded InGaAs channel InP HEMT with 305 GHz fT and 340 GHz fmax ,” IEEE Electron Dev. Lett., vol. 15, pp. 477-479, Nov. 1994.
[4] T. Suemitsu, H. Furshimi, S. Kodama, S. Tsunashima, S. Kimura, “Influence of Hole Accumulation on the Source Resistance, Kick Effect, and On state Breakdown of InP-Based HEMTs:Light Irradiation Study,” in 13th Int. Conf. on InP and related materials, pp. 14-18, May 2001.
[5] G. G. Zhou, A. F. Colbrie, J. S. Harris, “IV kink in InAlAs/InGaAs MODFET’s due to weak impact ionization Process in the InGaAs channel,” in 6th Int. Conf. on InP and related materials, pp. 27-31, 1994.
[6] R. T. Webster, S. Wu, A. F. M. Anwar, “Impact Ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Dev. Lett., vol. 21, no. 5, pp. 193-195, May 2000.
[7] P. HO , M. Y. KAO, P. C. CHAO, K. H. G. DUH, J. M. Ballingall, S. T. Allen, A. J.TESSMER, P.M. SMITH, “Extremely high gain 0.15 μm gate-length InAlAs-InGaAs-InP HEMTs,” IEEE Electronics Lett., vol 27, no. 4, pp. 325-327, Feb. 1991.
[8] C. P. Yi, C. NISHIMOTO, M. RIAZIAT, R. MAJIDI, N. G. BECHTEL, J. S. HARRIS, “Impact of surface layer on In0.52Al0.48As/In0.53Ga0.47As/InP high electron mobility transistors,” IEEE Electron Dev. Lett., vol. 11, no. 7, pp. 312-314, 1990.
[9] T. Enoki, K. Arai, A. Kohzen, Y. Ishii, “InGaAs/InP double channel HEMT on InP”, in 4th Int. Conf. on InP and related materials, 1992, pp. 14-17.
[10] T. Enoki, K. Arai, A. Kohzen, Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HEFT’s,” IEEE Trans. Electron devices. vol 42, no 8, pp. 1413-1418, Aug. 1995.
[11] H. Maher, J. D´ecobert, A. Falcou, A. Scavennec, “A 3-channel InP HEMT with low output conductance,” in 11th Int. Conf. on InP and related materials, 1999, pp 16-20.
[12] H. Maher, J. D´ecobert, A. Falcou, M. L. Pallec, Y. I. Nissim, A. Scavennec “A triple channel on InP (Camel HEMT) for Larger-Signal High-speed Applications,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 32-37, Jan. 1999.
[13] K. B. Chough, T. Y. chang, M. D. Feuer, B. Lalevic, “Comparison of device performance of highly strained Ga1-xInxAs/Al0.48In0.52As (0.53⩽x⩽0.90) MODFETs,” IEEE Electronics Lett., vol. 28, no. 3, pp. 329-330, Jan. 1992
[14] K. L. Tan, D. C. Streit, P.D. Chow, R.M. Dia, A.C. Han, P.H. Liu, D. Garske, R. Lai “140 GHz 0.1 μm gate-length pseudomorphic In0.52Al0.48As/In0.60Ga0.40 As/InP HEMT,” IEDM, pp. 239-242, Dec. 1991
[15] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T Hsu, Y. H. Wu, “On the improvement of gate voltage swing in δ-doped GaAs/InnGa1-x/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, no. 9, pp. 1630-1635, Sept. 1993.
[16] K. B. Cough, B. W. Hong, C. Caneau, J. I. Song, K. I. Jeon, S. C. Hong, K. Lee, “Graded pseudomorphic channel AlInP-AlInAs-GaInAs HEMTs with high channel breakdown voltage,” IEEE Electronics Lett., vol. 30, no. 5, pp. 453-454, March 1994.
[17] K. B. Cough, W. P. Hong, C. Caneau, J.-I. Song, “High-Performance InP-based HEMT’s with a Graded Pseudomorphic Channel,” IEDM, 1993, pp. 229-231.
[18] K. B. Cough, C. Caneau, W. P. Hong, J.-I. Song, “Al0.25In0.75P/Al0.48In0.52As/In0.65Ga0.35As Graded Channel pseudomorphic HEMT’s with high channel-breakdown voltage,” IEEE electronics Lett. vol 15, no 1, pp. 33-35, 1994.
[19] R. Grundbacher, M. Nishimoto, T. P. Chin, Y. C. Chen, R. Lai, D. Y. G. Schreyer, T. Block, V. Medvedev, D. Streit, “InP HEMT’s with 39% PAE and 162-mW Output Power at V-band,” IEEE Microwave and guided wave Lett., vol. 9, no. 6, pp. 236-238, June 1999.
[20] S. R. Bahl, J. A. del Alamo, J. Dickmann, S. Schildberg, “Off-state Breakdown in InAlAl/InGaAs MODFET’s,” IEEE Electron Dev., Vol. 42, pp. 15-22, Jan. 1995.
[21] V. Swaminathan, A. T. Macrander, “Materials aspects of GaAs and InP based structures,” chapter 1, AT&T: Prentice Hall, 1991.
[22] S. M. Sze, “Semiconductor devices physics and Technology”, New York: Wiley, 2000.
[23] N. Shigekawa, T. Enoki, T. Furuta, H. Ito, “Electroluminescence of InAlAs/InGaAs HEMT’s lattice-matched to InP substrate,” IEEE Electron Devices, Lett., vol. 16, pp. 515-517, Nov. 1995.
[24] M. H. Somervile, A. Ernst, J. A. del Alamo, “ A physical model for the kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 47, No. 5, pp. 922-930, May 2000.