簡易檢索 / 詳目顯示

研究生: 鄭竣升
Cheng, Jun-Sheng
論文名稱: 以線上系統參數估測法達成自動發電控制之適應性調整策略
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 遞迴最小平方演算法負載頻率控制自動發電控制
外文關鍵詞: Recursive Least Square Algorithm, Load Frequency Control, Automatic Generation Control
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 負載頻率控制 (Load Frequency Control, LFC) 之操作原理為求取發電量和需求間之平衡。近年之研究中顯示,應用適應控制方法完成自動發電控制 (Automatic Generation Control, AGC)有其優越性,但自主性適應控制器必須即時取得系統參數,而相關文獻中卻對其取得之方式無明確之說明。故本論文針對單區域系統提出利用遞迴最小平方演算法 (Recursive Least Square Algorithm, RLS) 來估測系統參數。估測而得之參數,不僅可作為增益排程 (Gain Scheduling) 技術中表定增益值之參考模型,還可在時變的情況下,利用其參考模型輔助調整控制器之線上增益值。模擬結果顯示出以RLS演算法為基礎之估測方式應用於適應調整控制器可以提高LFC之性能。

    Making balance between the generation and demand is the operating principle of the Load Frequency Control (LFC).
    Several studies in LFC have led to the trend of implementing the adaptive approach on the Automatic Generation
    Control (AGC). However, the adaptive controller with self-tuning technique requires online acquisition of system
    parameters that was not clearly stated in the related literatures. This thesis proposes the online Recursive Least
    Square (RLS) estimate on system’s parameters for an isolated power system. The estimated parameters not only
    could be used as a reference model for deploying the nominal gains in gain scheduling technique, but also could
    be applied to the online tuning of the controller gains under the time-varying condition.Simulation results show
    that the RLS based estimate with an adaptive controller could enhance the performance of the LFC.

    摘要…………I Abstract……II 誌 謝………III 目 錄………IV 表目錄………VIII 圖目錄………IX 符 號 表……XII 第一章 緒論………………………………………………………1 1.1 研究動機………………………………………………………1 1.2 貢獻……………………………………………………………2 1.3 本文大綱………………………………………………………3 第二章 負載頻率控制……………………………………………4 2.1 前言……………………………………………………………4 2.2 同步機之基本運轉方程式……………………………………4 2.3 負載模型………………………………………………………8 2.4 原動機模型……………………………………………………10 2.5 調速機模型……………………………………………………11 2.6 單區域系統之自動發電控制…………………………………17 2.7 各類型調速機-原動機模型……………………………………20 第三章 鑑別系統參數……………………………………………24 3.1 前言……………………………………………………………24 3.2 機組響應模型建立……………………………………………24 3.3 系統識別………………………………………………………27 3.4 降階……………………………………………………………27 3.5 不同類型模型之機組響應……………………………………30 3.6 影響頻率變動的暫態響應-慣性常數………………………33 3.7 影響頻率變動的穩態值-系統頻率響應特性值(β)…………34 第四章 系統變數狀態估測…………………………………………37 4.1 前言……………………………………………………………37 4.2 最小平方法……………………………………………………37 4.3 遞迴最小平方演算法…………………………………………37 4.4 牛頓型演算法應用於線性模型估測…………………………43 4.5 狀態估測發電機組時間常數…………………………………46 4.6 狀態估測系統之慣性常數及β………………………………49 4.7 模擬估測實驗…………………………………………………50 4.8 比較系統機組響應與估測模型之機組響應…………………51 第五章 應用遺傳基因演算法於增益排程…………………………52 5.1 前言……………………………………………………………52 5.2 概述……………………………………………………………52 5.3 適應函數及設定變數…………………………………………54 5.4 編碼……………………………………………………………55 5.5 解碼……………………………………………………………56 5.6 初始族群………………………………………………………57 5.7 自然淘汰………………………………………………………57 5.8 複製……………………………………………………………58 5.8.1 輪盤法………………………………………………………59 5.8.2 錦標賽法……………………………………………………59 5.9 交配……………………………………………………………59 5.10 突變…………………………………………………………61 5.11 基因演算法之優缺點………………………………………62 5.12 排定表定操作條件之積分增益值…………………………62 5.12.1 Case1……………………………………………………63 5.12.2 Case2……………………………………………………66 5.12.3 Case1、Case2之比較結論………………………………68 5.12.4 Case3……………………………………………………70 第六章 應用Sugeno Fuzzy Model於自動發電控制……………73 6.1 前言……………………………………………………………73 6.2 傳統、模糊集合概念…………………………………………74 6.3 模糊集合之基本演算…………………………………………75 6.3.1 聯集……………………………………………………………75 6.3.2 交集……………………………………………………………76 6.3.3 補集合…………………………………………………………76 6.4 模糊邏輯控制系統………………………………………………77 6.4.1 模糊化介面……………………………………………………78 6.4.2 決策邏輯………………………………………………………78 6.4.3 解模糊化介面…………………………………………………78 6.4.4 知識庫…………………………………………………………79 6.5 模糊推論法………………………………………………………82 6.5.1 Mamdani Fuzzy Model………………………………………82 6.5.2 Sugeno Fuzzy Model…………………………………………84 6.6 應用Sugeno Fuzzy Model方法計算適應控制增益值…………86 6.7 Fuzzy Gain Scheduling控制器之模擬測試……………………88 6.7.1 Case1(負載步階擾動)………………………………………88 6.7.2 Case2(負載連續擾動)………………………………………91 第七章 結論與未來研究方向………………………………………94 7.1 結論………………………………………………………………94 7.2 未來研究方向……………………………………………………96 參考文獻………………………………………………………………97

    [1] H. Saadat, Power System Analysis, McGraw-Hill, Boston, USA, 2002.
    [2] J. Talaq and F. Al-Basri, “Adaptive Fuzzy Gain Scheduling for Load Frequency Control,” IEEE Trans. Power
    Syst Vol: 14(1), pp.145-150,Feb.1999.
    [3] N. Jaleeli, L.S. VanSlyck, D.N. Ewart, L.H. Fink and A.G. Hoffman, “Understanding Automatic Generation
    Control,” IEEE Trans. Power Syst., vol: 7, pp. 1106-1122, Aug. 1992.
    [4] L. R. Chang-Chien, N.-B. Hoonchareon, C.-M. Ong and R.A. Kramer, “Estimation of for Adaptive Frequency
    Bias Setting in Load Frequency Control,” IEEE Trans. Power Syst., vol: 18, pp. 904-911, May. 2003.
    [5] T. Kennedy, S.M. Hoyt and C.F. Abell, “Variable, Non-linear Tie-Line Frequency Bias For Interconnected
    System Control,” IEEE Trans. Power Syst., Vol: 3, pp.1244-1253,Aug. 1988.
    [6] C.S. Chang and W. Fu, “Area Load Frequency Control Using Fuzzy Gain Scheduling of PI Controllers,” Elec.
    Power Syst. Resea., vol:42,pp.145-152,1997.
    [7] C.T. Pan and C.M. Liaw, “An Adaptive Controller for Power System Load-Frequency Control,” IEEE Trans.
    Power Syst., vol:4(1),pp.122-128,Feb.1989.
    [8] 羅建昇、張簡樂仁,“利用系統控制誤差演算法於自動發電控制的效能評估,” 第二十五屆電力工程
    研討會,2004年11月,台南。
    [9] 羅建昇,應用系統控制誤差演算法於頻率調節服務的效能評估及成本量化基準,國立成功大學電機工
    程學系碩士論文,民國九十四年六月。
    [10] J. J. Grainger and W. D. Stevenson Jr., Power System Analysis, McGraw-Hill, Boston, USA, 1994.
    [11] C. M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK, Prentice-Hall, NJ, USA,
    1998.
    [12] A.J. Wood and B.F. Wollenberg , Power generation, operation and control, John Wiley Interscience , 2nd,
    ED. New York, 1996.
    [13] P. Kundur , Power system stability and control, McGraw-Hill,, 1st, ED., 1994.
    [14] 李科賢,應用ANN-SCE演算法評估自動發電控制效能及估測頻率響應特性值,國立成功大學電機工
    程學系碩士論文,民國九十四年六月。
    [15] L. R. Chang-Chien, Y. J. Lin and C. C. Wu, ”A Real-Time Contingency Reserve Scheduling for an Isolated
    Power System,” IEEE Trans. Reliability., vol:56(1), pp.139-147,Mar.2007.
    [16] IEEE Committee Report, “Dynamic Models for Steam and Hydro Turbines in Power System Studies”, IEEE
    Trans. Power Apparat. Syst., vol:PAS-92, pp. 1904-1915, Nov/Des 1973.
    [17] IEEE Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Stdies,
    “Dynamic Models for Fossil Fueled Steam Units in Power System Studies,” IEEE Trans. Power
    Syst., vol: 6, pp.753-761, May 1991.
    [18] G. A. Chown, and B. Wigdorowitz, “A Methodology for the Redesign of Frequency Control for AC Networks,
    ” IEEE Trans. Power Syst., vol.19(3),pp.1546-1554,Aug. 2004.
    [19] G. A. Chown, and R. C. Hartman, “Design and Experience with a Fuzzy Logic Controller for Automatic
    Generation Control(AGC),” IEEE Trans. Power Syst., vol.13(3),pp.965-970,Aug.1998.
    [20] 林胤均,因應獨立型電力系統的即時偶發事故備載規劃,國立成功大學電機工程學系碩士論文,
    民國九十五年六月。
    [21] L. Ljung , “Developments for the system identification toolbox for matlab,” Proc. Of the 1 1th IFAC
    Symposium on System Identification , SYSID 97, 8-11 July, Kitakyushu, Japan, vol. 2, pp.969
    -973, 1997.
    [22] P. Van Overschee and B. De Moor , Subspace Identification for Linear Systems: Theory, Implementation,
    Applications. Kluwer Academic, Dordrecht, The Netherlands, 1996.
    [23] R. Cortelett i, P.R. Barros , and A.M.N. Lima, “Parameters Estimation of Induction Motor Using Subspace
    Methods,” IEEE International Symposium. Industrial Electronics, Vol:2 , pp. 667-671 , June 2003.
    [24] A.J. Laub, M.T. Heath, C.C. Paige, and R.C. Ward , “Computation of System Balancing Transformations and
    Other Applications of Simultaneous Diagonalization Algorithms,” IEEE Trans. Auto. Ctrl.,
    vol: 32, pp. 115-122, 1987.
    [25] L.S. VanSlyck, N. Jaleeli and W.R. Kelly, “Implication of Frequency Control Bias Settings on
    Interconnected System Operation and Inadvertent Energy Accounting,” IEEE Trans. Power Syst.,
    vol: 4,pp. 712-723, May 1989.
    [26] E.K.P. Chong and S.H. Zak,An Introduction to Optimization, John Wiley & Sons, New York, 1996.
    [27] V. Terzija, M. Djuric, and B. Kovacevic, “Voltage phasor and local system frequency estimation using
    newton type algorithm,” IEEE Trans. Power Del., vol. 9, no. 3, pp. 1368–1374, Jul. 1994.
    [28] V.V. Terzija , “Adaptive Underfrequency Load Shedding Based on the Maginitude of the Disturbance
    Estimation,” IEEE Trans. Power Syst., vol:21(3), pp. 1260-1266, Aug. 2006.
    [29] J.H Holland, ”Outline for a Logical Theory of Adaptive Systems,” J,ACM.,vol.3,pp.297-314,1962.
    [30] J.H. Holland, ”Adaptive in Natural and Artificial systems ,”Ann Arbor, MI Univ. Mich. Press,1975.
    [31] Y. L. Abdel-Magid and M. M. Dawoud, “Optimal AGC tuning with genetic algorithms,” Elect. Power Syst.
    Res., vol. 38, no. 3, pp. 231–238,Sep. 1996.
    [32] S. K. Aditya and D. Das, “Design of load frequency controllers using genetic algorithm for two area
    interconnected hydro power system,” Elect. Power Compon. Syst., vol. 31, no. 1, pp. 81–94,
    Jan. 2003.
    [33] A. Abdennour, “Adaptive optimal gain scheduling for the load frequency control problem,” Elect. Power
    Compon. Syst., vol. 30, no. 1, pp. 45–56, Jan. 2002.
    [34] R. L. Haupt and S. E. Haupt,Practical Genetic Algorithms,Wiley-Interscience,2004.
    [35] 周鵬程,遺傳演算法原理與應用-活用Matlab (修訂版) ,全華科技圖書股份有限公司,
    民國94年3月。
    [36] G. Lindfield and J. Penny,Numerical Methods Using MATLAB,Ellis Horwood,1995.
    [37] Mitchell, Melanie , An introduction to genetic algorithms, MIT Press,1996.
    [38] Hojjat Adeli, Shih-Lin Hung, Machine learning :neural networks, genetic algorithms, and fuzzy systems,
    Wiley,1995.
    [39] Lance Chambers, Practical handbook of genetic algorithms, CRC Press,1995.
    [40] L. A. Zadeh, “Fuzzy sets,” Inform. Control, v8, pp.338-353,1965.
    [41] 向殿政男,Fuzzy手法進階,全華科技圖書股份有限公司,民國82年8月。
    [42] 中國生產力中心技術引進服務組,Fuzzy控制,全華科技圖書股份有限公司,
    民國80年9月。
    [43] 楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂,模糊控制理論與技術,全華科技圖書股份有
    限公司,85年11月。
    [44] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller–Part I,” IEEE Trans. Syst., Man,
    Cybern., vol. 20, no. 2, pp. 404 – 418,Mar./Apr. 1990.
    [45] Ching-Fand Lin,ADVANCED CONROL SYSTEMS DESIGN,PTR Prentice Hall,1993.
    [46] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller – Part II,” IEEE Trans. Syst.,
    Man, Cybern., vol. 20, no. 2, pp. 419–435,Mar./Apr. 1990.
    [47] 張斐章、張麗秋、黃浩倫,類神經網路理論與實務,東華書局民國92年。
    [48] Li-Xin Wang,A course in fuzzy systems and control,Prentice Hall PTR,1997.
    [49] E.H. Mamdani, “Application of Fuzzy Algorithm for Control of Simple Dynamic Plant,” Proc. IEEE, Vol.
    21(2), pp.1585-1588. 1974.
    [50] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,
    ”Inter.J.Man-Mach. Studies, 7, 1-13, 1975.
    [51] M. Sugeno and G. T. Kang , “Structure Identification of Fuzzy Model, ” Fuzzy Sets and Systems.
    28:15-33. 1988.
    [52] T. Takagi and M. Sugeno , “ Fuzzy Identification of Systems and Its Applications to Modeling and Control.,
    ”IEEE Transactions on Systems, Man, and Cybernetics. 15:116-132. 1985.
    [53] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. Syst., Man, Cybern,,
    vol. 23, pp. 665–685, 1993.

    下載圖示 校內:2010-07-18公開
    校外:2012-07-18公開
    QR CODE