| 研究生: |
鍾雅欣 Chung, Ya-Hsin |
|---|---|
| 論文名稱: |
具乾濕變色功能之鹼激發還原碴膠結材 Alkali-Activated Reducing-Slag Binders with the Characteristic of Color-Changing under Wet and Dry Environments |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 還原碴 、廢容器玻璃 、鹼激發 、膠結材 、酚酞 、百里酚酞 、乾溼變色功能 |
| 外文關鍵詞: | reducing-slag, waste container glass, alkali-activation, binder, thymolphalein, phenolphthalein, color-changing mechanism |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
還原碴為電弧爐煉鋼過程中之副產物,由於其內部含有大量氧化鈣,當遇水將會產生體積膨脹之化學反應,同時,溶出鹼性氫氧根離子,因此,無法直接應用作為營建填充材,若將其隨意丟棄處理也可能造成環境破壞與生態汙染。為提供還原碴資源化再利用之途徑,本研究混合不同比例還原碴及廢容器玻璃粉,作為製造鹼激發膠結材之原料, 另外,分別添加適量酚酞及百里酚酞作為酸鹼指示劑,賦予所製成鹼激發還原碴膠結材之潮濕乾燥變色功能,進而提高其商業用途之經濟價值。針對不同原料及色料之設計配比,將其所製成膠結材試體進行乾濕色彩差異分析及抗壓強度、吸水率、反覆變色等試驗量測,以探討不同種類及添加量之酸鹼指示劑、鹼活化劑濃度、反覆乾濕變色次數等,對鹼激發還原碴膠結材試體色彩差異、感濕性及耐久性等材質影響。試驗結果顯示,當還原碴取代率固定為 50%時,添加 0.01%酚酞之鹼激發還原碴膠結材試體,選用鹼模數為 1.5 且鹼當量為 9%之鹼活化劑時,所製成試體之色彩差異值ΔE*ab 可高達 34.22,經 7 天空氣養護後,其抗壓強度約為16.34MPa,即使經過 10 次潮濕乾燥反覆變色作用後,其試體外觀仍保有色彩差異值 ΔE*ab 26.14 之高值。
Reducing slag containing a large amount of calcium oxide will undergo a chemical reaction of volume expansion and the dissolution of alkaline hydroxide ions when it is exposed to water. Hence, reducing slag cannot be used as a filling constituent in making construction materials. To evaluate the feasibility of recycling reducing-slag, reducing-slag and waste container glass were mixed in different proportions as the raw materials for making alkali-activated binders. Also, appropriate amounts of color-changing chemicals of phenolphthalein and thymolphthalein were added, giving the alkali-activated reducing-slag binders with the characteristic of colorchanging under dry and wet environment. By employing different proportions of alkaline solution and color-changing chemicals, the compressive strength, water absorption and color-changing mechanism of the alkali-activated reducing-slag binders were measured and then compared experimentally for dry and wet conditions. Based on the experimental results, the effects of type and content of color-changing chemicals, the concentration of alkaline activator and the repeated numbers of dry and wet conditions on the color difference, moisture sensitivity and durability of the alkali-activated reducing-slag binders are analyzed. It is found that the color difference value ΔE*ab of the binders can reach a maximum value of 34.33 when the replacement percentage of reducing slag and the addition fraction of phenolphthalein are fixed at 50% and 0.01% respectively and the alkaline activator with the silicate modulus of 1.5 and alkaline equivalent content of 9% is used. The compressive strength of the binders after 7 days of air curing is roughly 16.34MPa. The color difference value ΔE*ab is still 26.14 even after 10 repeated cycles of dry and wet conditions.
[1] 世界鋼鐵協會,「年度粗鋼總產量」,https://worldsteel.org/zh-hans/。
[2] 行政院公共工程委員會,公共工程高爐石混凝土使用手冊,2001。
[3] 全國法規資料庫,經濟部事業廢棄物再利用管理辦法。
[4] 行政院環境保護署, 111 年事業廢棄物申報量統計報告。
[5] 台灣鋼鐵工業同業公會,,高壓蒸氣安定化電弧爐煉鋼還原碴(石)應用於控制性低強度回填材料(CLSM)使用手冊, 2024。
[6] A. O. Purdon, "The action of alkalis on blast-furnace slag," Journal of the Society of Chemical Industry, vol. 59, no. 9, pp. 191-202, 1940.
[7] V. D. Glukhovskii, "New Building Materials," Bull. Tech. Inform, vol. 2,1957.
[8] J. Davidovits, "Geopolymers: inorganic polymeric new materials,"Journal of Thermal Analysis and calorimetry, vol. 37, no. 8, pp. 1633-1656, 1991.
[9] S. D. Wang, "Factors affecting the strength of alkali-activated slag,"Community College Review, vol. 24, no. 6, p. 1033, 1994.
[10] I. Lecomte , C. Henrist , M. Liégeois , F. Maseri , A. Rulmont , R. Cloots, "(Micro)-structural comparison between geopolymers, alkaliactivated slag cement and Portland cement.," Journal of the European Ceramic Society, vol. 26, no. 16, pp. 3789-3797, 2006.
[11] 闕山仲、方嘉德、徐照程、陳秀珍,分析化學,藝軒出版社,1993。
[12] RILEM, "CPC-18 Measurement of hardened concrete carbonation depth," in RILEM Recommendations for the Testing and Use of Constructions Materials, E&FN SPON, 1988.
[13] K. N. Plataniotis, A. N. Venetsanopoulos, Color Image Processing and Applications, Springer Science & Business Media, 2000.
[14] N. A. Ibraheem, M. M. Hasan, R. Z. Khan, P. K. Mishra, "Understanding Color Models: A Review," ARPN Journal of Science and Technology, vol. 2, no. 3, pp. 265-275, April 2012.
[15] 國際照明委員會,https://cie.co.at/。
[16] B. C. K. Ly, E. B. Dyer, J. L. Feig, A. L. Chien, S. D. Bino, "Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement," Journal of Investigative Dermatology, vol. 140, no. 1, pp. 3-12, January 2020.
[17] R. Lukac, K. N. Platanioti, Color image processing : methods and applications, CRC Press, 2006.
[18] C. Oleari, Standard Colorimetry: Definitions, Algorithms and Software, John Wiley & Sons, Ltd, 2015.
[19] G. Sharma, R. Bala, Digital Color Imaging Handbook, CRC Press, 2017.
[20] V. F. Barbosa, K. J. MacKenzie, C. Thaumaturgo, "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers," International journal of inorganic materials, vol. 2, no. 4, pp. 309-317, 2000.
[21] 柯文弼,「高溫高壓製程之鹼激發還原碴營建材料」,國立成功大學土木工程研究所,碩士論文,2022。
[22] 邱揚真,「具潮濕乾燥變色功能之鹼激發玻璃膠結材」,國立成功大學土木工程研究所,碩士論文,2023。
[23] CNS11272,,水硬性水泥密度試驗法,1985。
[24] CNS2924,波特蘭水泥細度檢驗法(氣透儀法),1984。
[25] CNS1010,水硬性水泥墁料抗壓強度檢測法,1993。
[26] ASTMC642-13, “Standard Test Method for Density, Absorption, and Voids in Hardended Concrete,” 2013.