簡易檢索 / 詳目顯示

研究生: 翁嘉蓮
Weng, Chia-Lien
論文名稱: Li2MgTi3O8:Mn4+紅色螢光粉之製備與敏化劑參雜之光致發光性質提升研究
The Synthesis and Photoluminescence Enhancement of Sensitizer-Doped Li2MgTi3O8:Mn4+ Red Phosphor
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: Li2MgTi3O8:Mn4+紅色螢光粉光致發光敏化劑
外文關鍵詞: Li2MgTi3O8: Mn4+, red phosphor, photoluminescence, sensitizer
相關次數: 點閱:53下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以固態反應法製備Li2MgTi3O8作為主體材料,Mn4+離子作為發光中心之紅色螢光粉(Li2MgTi3O8:Mn4+),且藉由Al3+、Ge4+置換Ti4+以及Co2+置換Mg2+位置,探討其粉體結構與光致發光性質等特性。
    第一部分先以密度泛函理論為基礎之ab initio計算,建構出Al3+、Ge4+和Co2+離子參雜之Li2MgTi3O8:Mn4+能態密度圖。其結果預測出Ge4+或Co2+的參雜由於能帶重疊可以作為敏化劑,藉由共振來減少多重聲子躍遷所造成的能量損失,而提升光致發光強度。
    第二部分探討在不同蝦燒溫度下,Li2MgTi3O8:Mn4+之光致發光特性,其結果顯示隨著溫度的上升,有結晶性提升、顆粒增大以及發光強度提升的趨勢,而在1100℃時有最佳結晶性和最高發光強度。
    第三部分探討不同Mn4+參雜濃度之影響,當Mn4+參雜濃度為0.1%時可得到最強的發光強度,由Raman結果推測可能為較佳的結晶性。SEM結果顯示Mn4+參雜濃度對於粉體表面形貌沒有顯著影響。Li2MgTi3O8:0.1%Mn4+在325 nm激發光源下,可得到680 nm的紅光,激發光譜涵蓋300-550 nm,可有效地以紫外光、藍光LED或近紫外光激發,擴散反射光譜和吸收光譜可輔助激發光譜之結果。
    第四部份結果顯示參雜Al3+離子會降低發光強度,參雜0.1%Ge4+離子可增加約55%發光強度,而參雜0.5% Co2+離子發光強度增加316%,最強放射峰值在Co2+離子高濃度時紅移至696 nm,這是由於能隙值下降使得放射波長增加。這些結果和第一部份計算結果相符。

    Mn4+ doped Li2MgTi3O8 non-rare-earth red phosphor were discussed theoretically and experimentally. Ab initio calculation of density of states (DOS) based on density function theory (DFT) were conducted first to predict the effect of doping Mn4+ and sensitizers (Ge4+ and Co2+). The overlapped states indicated that Ge4+ and Co2+ could be the sensitizers to enhance the emission intensity. Then the phosphor was synthesized by conventional solid-state reaction. The effects of calcination temperature and Mn4+ doping concentration were investigated to determine the optimal preparation conditions. Through the analysis of XRD and PL, it can be found that the crystallinity plays an important role in the luminescent intensity. In addition, the emission intensity increase 55% and 316% after doping of Ge4+ and Co2+, respectively. The red-shift of emission peak in Co2+-doped PL spectra is ascribed to the band-narrowing, which is confirmed by the results of UV-vis. In this work, the DOS calculation is all proved by the experimental results.

    摘要 I Extended Abstract II 致謝 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 主體材料介紹 3 1.4 論文架構 6 第二章 理論基礎與文獻回顧 7 2.1 螢光材料介紹 7 2.2 螢光材料分類 9 2.2.1 激發源分類 9 2.2.2 螢光材料發光特性分類 9 2.2.3 電子躍遷形式分類 11 2.3 發光機制 12 2.3.1 發光原理 12 2.3.2 螢光與磷光 14 2.3.3 螢光體能量的激發與吸收 14 2.3.4 史托克位移 16 2.4 影響發光特性因素 17 2.4.1 主體共價效應 17 2.4.2 晶格場效應 17 2.4.3 濃度淬滅效應 18 2.4.4 抑制劑 19 第三章 實驗步驟與方法 20 3.1 第一原理計算 20 3.2 實驗材料 21 3.3 實驗流程 22 3.3.1 粉末的製備與球磨 23 3.3.2 粉末的煆燒 25 3.4 分析儀器與方法 25 3.4.1 X光繞射分析儀 25 3.4.2 掃描式電子顯微鏡 26 3.4.3 微拉曼及微光激發光譜儀 27 3.4.4 光致發光光譜儀 28 3.4.5 紫外光-可見光-進紅外光分光光譜儀 29 3.4.6 C.I.E色度座標分析 30 第四章 實驗結果與討論 32 4.1 能態密度圖之計算 32 4.1.1 Li2MgTi3O8之能態密度圖 32 4.1.2 Li2MgTi3O8參雜Mn4+之DOS 33 4.1.3 Li2MgTi3O8參雜Mn4+和敏化劑之DOS 36 4.2 不同溫度下Li2MgTi3O8參雜0.1% Mn4+之特性探討 41 4.2.1 XRD分析 41 4.2.2 SEM分析 45 4.2.3 PL光譜分析 47 4.3 參雜不同濃度Mn4+於Li2MgTi3O8之特性探討 49 4.3.1 XRD分析 49 4.3.2 SEM分析 50 4.3.3 PL分析 52 4.3.4 PLE分析 54 4.3.5 UV-Vis分析 56 4.3.6 Raman光譜分析 58 4.4 Li2MgTi3O8參雜0.1%Mn4+和不同敏化劑之特性探討 62 4.4.1 XRD分析 62 4.4.2 光譜分析 66 4.4.3 UV-Vis分析 74 4.4.4 C.I.E色度座標圖 78 第五章 結論 81 5.1 研究結論 81 5.2 未來展望 82 參考文獻 83

    [1] J. C. B. Daniel A. Steigerwald, Dave Collins, Robert M. Fletcher, Mari Ochiai Holcomb, Michael J. Ludowise, "Illumination With Solid State Lighting Technology," IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 8, MARCH/APRIL 2002.
    [2] C. R. a. A. M. V. Bachmann, "Temperature Quenching of Yellow Ce3+ Luminescence in YAG Ce," Chem. Mater., vol. 21, pp. 2077–2084, 2009.
    [3] C. C. Lin, Y. S. Zheng, H. Y. Chen, C. H. Ruan, G. W. Xiao, and R. S. Liu, "Improving Optical Properties of White LED Fabricated by a Blue LED Chip with Yellow/Red Phosphors," Journal of The Electrochemical Society, vol. 157, p. H900, 2010.
    [4] R.-J. Xie, N. Hirosaki, T. Suehiro, F.-F. Xu, and M. Mitomo, "A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes," Chemistry of materials, vol. 18, pp. 5578-5583, 2006.
    [5] D. Chen, Y. Zhou, and J. Zhong, "A review on Mn4+ activators in solids for warm white light-emitting diodes," RSC Adv., vol. 6, pp. 86285-86296, 2016.
    [6] C.-S. Huang, "無稀土及無氟化物紅光螢光粉之合成及第一原理綜合探討," 成功大學電機工程學系學位論文, pp. 1-66, 2016.
    [7] G. T. Anand, L. J. Kennedy, and J. J. Vijaya, "Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xCoxAl2O4 (0⩽x⩽0.5) spinel nanostructures," Journal of Alloys and Compounds, vol. 581, pp. 558-566, 2013.
    [8] 劉. 劉如熹, 發光二極體用氧氮螢光粉介紹: 全華科技圖書, 2006.
    [9] P. Pust, V. Weiler, C. Hecht, A. Tucks, A. S. Wochnik, A. K. Henss, et al., "Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material," Nat Mater, vol. 13, pp. 891-6, Sep 2014.
    [10] K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, "Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes," Electrochemical and Solid-State Letters, vol. 9, p. H22, 2006.
    [11] K. T. Rim, K. H. Koo, and J. S. Park, "Toxicological evaluations of rare earths and their health impacts to workers: a literature review," Saf Health Work, vol. 4, pp. 12-26, Mar 2013.
    [12] M. H. Du, "Chemical trends of Mn4+ emission in solids," Journal of Materials Chemistry C, vol. 2, p. 2475, 2014.
    [13] H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, et al., "Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes," Nat Commun, vol. 5, p. 4312, 2014.
    [14] J. Meyer and F. Tappe, "Photoluminescent Materials for Solid‐State Lighting: State of the Art and Future Challenges," Advanced Optical Materials, vol. 3, pp. 424-430, 2015.
    [15] B. Wang, H. Lin, J. Xu, H. Chen, and Y. Wang, "CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED," ACS Appl Mater Interfaces, vol. 6, pp. 22905-13, Dec 24 2014.
    [16] R. Cao, M. Peng, E. Song, and J. Qiu, "High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED," ECS Journal of Solid State Science and Technology, vol. 1, pp. R123-R126, 2012.
    [17] Y. Jin, Y. Hu, H. Wu, H. Duan, L. Chen, Y. Fu, et al., "A deep red phosphor Li2MgTiO4:Mn4+ exhibiting abnormal emission: Potential application as color converter for warm w-LEDs," Chemical Engineering Journal, vol. 288, pp. 596-607, 2016.
    [18] H. Chen, H. Lin, Q. Huang, F. Huang, J. Xu, B. Wang, et al., "A novel double-perovskite Gd2ZnTiO6:Mn4+ red phosphor for UV-based w-LEDs: structure and luminescence properties," J. Mater. Chem. C, vol. 4, pp. 2374-2381, 2016.
    [19] V. S. Hernandez, L. M. T. Martinez, G. C. Mather, and A. R. West, "Stoichiometry, structures and polymorphism of spinel-like phases, Li1. 33xZn2-2xTi1+ 0.67 xO4," 1996.
    [20] S. George and M. T. Sebastian, "Synthesis and Microwave Dielectric Properties of Novel Temperature Stable High Q, Li2ATi3O8 (A=Mg, Zn) Ceramics," Journal of the American Ceramic Society, vol. 93, pp. 2164-2166, 2010.
    [21] N. Jović, M. Vučinić-Vasić, A. Kremenović, B. Antić, Č. Jovalekić, P. Vulić, et al., "HEBM synthesis of nanocrystalline LiZn0.5Ti1.5O4 spinel and thermally induced order–disorder phase transition," Materials Chemistry and Physics, vol. 116, pp. 542-549, 2009.
    [22] F. Qie and Z. Tang, "Cu-doped Li2ZnTi3O8 anode material with improved electrochemical performance for lithium-ion batteries," Materials Express, vol. 4, pp. 221-227, 2014.
    [23] M.-H. Du, "Using DFT Methods to Study Activators in Optical Materials," ECS Journal of Solid State Science and Technology, vol. 5, pp. R3007-R3018, 2016.
    [24] G. Blasse and B. Grabmaier, Luminescent materials: Springer Science & Business Media, 2012.
    [25] J. Chen, W. Zhao, N. Wang, Y. Meng, S. Yi, J. He, et al., "Energy transfer properties and temperature-dependent luminescence of Ca14Al10Zn6O35: Dy3+, Mn4+ phosphors," Journal of Materials Science, vol. 51, pp. 4201-4212, 2016.
    [26] G. Blasse, "Energy transfer in oxidic phosphors," Physics Letters A, vol. 28, pp. 444-445, 1968.
    [27] C. C. Klick and J. H. Schulman, "Luminescence in solids," Solid State Physics, vol. 5, pp. 97-172, 1957.
    [28] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids vol. 44: Oxford University Press, 2006.
    [29] B. N. Figgis, "Ligand field theory," Comprehensive Coordination Chemistry, vol. 1, pp. 213-279, 1987.
    [30] D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, pp. 836-850, 1953.
    [31] G. Blasse, "Energy transfer between inequivalent Eu2+ ions," Journal of Solid State Chemistry, vol. 62, pp. 207-211, 1986.
    [32] S. Shionoya, W. M. Yen, and H. Yamamoto, Phosphor handbook: CRC press, 2006.
    [33] G. Kresse and J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Physical review B, vol. 54, p. 11169, 1996.
    [34] D. A. Long and D. Long, Raman spectroscopy: McGraw-Hill New York, 1977.
    [35] X. Ding, Q. Wang, and Y. Wang, "Rare-earth-free red-emitting K2Ge4O9:Mn4+ phosphor excited by blue light for warm white LEDs," Phys Chem Chem Phys, vol. 18, pp. 8088-97, Mar 21 2016.
    [36] X. Zhou, J. Shi, and C. Li, "Effect of Metal Doping on Electronic Structure and Visible Light Absorption of SrTiO3 and NaTaO3(Metal = Mn, Fe, and Co)," The Journal of Physical Chemistry C, vol. 115, pp. 8305-8311, 2011.
    [37] Y. Takeda, H. Kato, M. Kobayashi, H. Kobayashi, and M. Kakihana, "Photoluminescence Properties of Mn4+-activated Perovskite-type Titanates, La2MTiO6:Mn4+(M = Mg and Zn)," Chemistry Letters, vol. 44, pp. 1541-1543, 2015.
    [38] M. Ha, E. Jeong, M. Won, H. Kim, H. Pak, J. Jung, et al., "Electronic Band Structure and Photocatalytic Activity of M-Doped TiO (M= Co and Fe)," JOURNAL-KOREAN PHYSICAL SOCIETY, vol. 49, p. S675, 2006.
    [39] L. Xue, Y. Wang, P. Lv, D. Chen, Z. Lin, J. Liang, et al., "Growth, Structures, and Properties of Li2Zn2(MoO4)3 and Co-doped Li2Zn2 (MoO4)3," Crystal Growth and Design, vol. 9, pp. 914-920, 2008.
    [40] J. P. You and F. G. Shi, "Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED," Journal of Lightwave Technology, vol. 27, pp. 5145-5150, 2009.
    [41] J. Qiu, K. Miura, N. Sugimoto, and K. Hirao, "Preparation and fluorescence properties of fluoroaluminate glasses containing Eu2+ ions," Journal of non-crystalline solids, vol. 213, pp. 266-270, 1997.
    [42] L. Lv, X. Jiang, S. Huang, X. a. Chen, and Y. Pan, "The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+," Journal of Materials Chemistry C, vol. 2, p. 3879, 2014.
    [43] H. Tang, J. Zhu, Z. Tang, and C. Ma, "Al-doped Li2ZnTi3O8 as an effective anode material for lithium-ion batteries with good rate capabilities," Journal of Electroanalytical Chemistry, vol. 731, pp. 60-66, 2014.
    [44] X. Lu, Y. Zheng, Q. Huang, and Z. Dong, "Structural Dependence of Microwave Dielectric Properties of Spinel-Structured Li2ZnTi3O8 Ceramic: Crystal Structure Refinement and Raman Spectroscopy Study," Journal of Electronic Materials, vol. 45, pp. 940-946, 2015.
    [45] L. Aldon, P. Kubiak, M. Womes, J. Jumas, J. Olivier-Fourcade, J. Tirado, et al., "Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel," Chemistry of Materials, vol. 16, pp. 5721-5725, 2004.
    [46] H. Taghipour-Armaki, E. Taheri-Nassaj, and M. Bari, "Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics," Journal of Materials Research, vol. 30, pp. 1619-1628, 2015.
    [47] L. Tian and S.-i. Mho, "Enhanced luminescence of SrTiO3:Pr3+ by incorporation of Li+ ion," Solid State Communications, vol. 125, pp. 647-651, 2003.
    [48] W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, "GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor," Materials Science and Engineering: B, vol. 177, pp. 274-277, 2012.
    [49] N. Kuleshov, V. Mikhailov, V. Scherbitsky, P. Prokoshin, and K. Yumashev, "Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4," Journal of Luminescence, vol. 55, pp. 265-269, 1993.
    [50] J. J. Lv, Y. L. Liu, Y. G. Su, Z. L. Chai, and X. J. Wang, "Doping Effect of Cobalt Ions Incorporated into NaTaO3 Nanocrystalline," Integrated Ferroelectrics, vol. 164, pp. 145-153, 2015.
    [51] K. Kanwal, B. Ismail, K. S. Rajani, N. J. S. Kissinger, and A. Zeb, "Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate," Journal of Electronic Materials, 2017.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE