簡易檢索 / 詳目顯示

研究生: 陳大道
Chen, Ta-Tau
論文名稱: 單體型滑動模式控制之研究
Study of Simplex-Type Sliding-Mode Control
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 140
中文關鍵詞: 單體型控制適應控制基因演繹模糊控制
外文關鍵詞: Simplex, Fuzzy control, Adaptive control, Genetic, sliding mode control
相關次數: 點閱:98下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對多輸入系統提出一系列單體型滑動模式控制之方法。首先發展一整合單體型穩定法則與模糊邏輯控制之模糊單體滑動模式控制之架構,根據此架構提出兩種模糊單體型滑動模式控制方法;一是單值型,另一是名詞集合型模糊單體滑動模式控制之架構。其次提出基因演導型的模糊單體型滑動模式控制之架構,應用基因演算法則推演出單體型控制向量以增進系統響應性能及減少抖動響應。接著發展一線性多變數離散系統的單體型滑動模式控制,同時推導證明此單體型滑動模式控制架構作用於線性多變數離散系統之穩定性,並提出一隨著滑動函數變動而調變之控制向量,以改善系統響應之抖動現象。同時將此離散單體型滑動模式控制應用於一殊異擾動系統之可行性亦予以討論。最後研發適應性及模糊適應性單體型滑動模式控制法則以改善控制向量選用的方法。本論文所提出一系列之單體型滑動模式控制方法,除定理推導證明外,所有電腦模擬之結果均展現所提方法之可行性及有效性。

    This dissertation proposes a series of simplex-type sliding-mode control (SMC) for multi-input systems. First, the integration of the simplex stability criterion and the fuzzy control is developed. This scheme yields the so-called fuzzy simplex-type sliding-mode control. Two fuzzy simplex-type SMC methods are presented, one is the singleton type and the other is the term-set type. Secondly, a genetic algorithm based fuzzy simplex-type SMC scheme is provided to evolve the simplex control vectors to improve the performance and reduce the chattering. Next, the stabilization of linear multivariable discrete-time system by using simplex-type SMC is proposed, where the introduction to the discrete-time simplex-type SMC is addressed in detail. Accompany with the switching function continuous variation the scaled control vectors are included to the discrete-time system to attenuate the chattering problem. Applying the discrete-time simplex-type SMC to a singularly perturbed system is also investigated. Finally, adaptive control and fuzzy adaptive control schemes based on the simplex-type SMC philosophy are developed. All the computer simulations demonstrate the feasibility and validity of these proposed simplex-type SMC schemes.

    中文摘要 I Abstract II Acknowledgment (Chinese) III Contents IV List of Figures V List of Tables XI Chapter 1 Introduction 1.1 Preliminary 1 1.2 Thesis Outline 5 Chapter 2 Introduction of Simplex and Sliding-Mode Control 2.1 Sliding Mode Control 9 2.1.1 The Sliding Phase 10 2.1.2 The Hitting Phase 11 2.2 Simplex-Type Sliding-Mode Control 13 2.2.1. The Principle of Simplex Method 13 2.3 Summary 18 Chapter 3 Fuzzy Simplex-Type Sliding-Mode Control 3.1 Introduction 19 3.2 Design of the Sliding -Mode Dynamics 21 3.3 Fuzzy Simplex-Type Sliding-Mode Control Design Procedures 23 3.3.1 Singleton Fuzzy Simplex-Type Sliding-Mode Control 24 3.3.2 Term-Set Fuzzy Simplex-Type Sliding-Mode Control 25 3.4 Example 27 3.5 Summary 29 Chapter 4 Integrated Fuzzy GA-Based Simplex-Type Sliding-Mode Control 4.1 Introduction 35 4.2 GA-Based Simplex-Type Sliding-Mode Control Design 37 4.3 Integrated Fuzzy GA-based Simplex-type Sliding-Mode Control Design43 4.4 Example 44 4.5 Summary 48 Chapter 5 Simplex-Type Sliding-Mode Control of Linear Discrete-Time Systems 5.1. Introduction 52 5.2 Design of the Sliding-Mode Dynamics 53 5.3 Design of the Simplex-Type Sliding-Mode Control 55 5.4 Example 62 5.5 Summary 63 Chapter 6 Stabilization of Singularly Perturbed Discrete-Time Systems by Simplex Sliding-Mode Control 6.1 Introduction 69 6.2 Modeling and Stabilization of Singularly Perturbed Discrete-Time System 70 6.3 Example 76 6.4 Summary 78 Chapter 7 Simplex-Type Adaptive Sliding-Mode Control 7.1 Introduction 83 7.2 Irregular Simplex-Type Control 83 7.3 Adaptive Control 88 7.4 Computer Simulations and Results 94 7.5. Summary 96 Chapter 8 Fuzzy Simplex-Type Adaptive Sliding-Mode Control 8.1 Introduction 105 8.2 Type 1 Fuzzy Simplex-Type Adaptive Sliding-Mode Control 105 8.3 Type 2 Fuzzy Simplex-Type Adaptive Sliding-Mode Control 109 8.4 Computer Simulations and Results 111 8.5 Summary 112 Chapter 9 Conclusions and Recommendations 9.1 Conclusions 118 9.2 Recommendations for Further Work 119 References

    [1] Baida, S. V. and Izosimov, D. B., “Vector method of design of sliding motion and simplex algorithms,” Automatic and Remote Control, vol. 46, pp. 830-837, 1985.
    [2] Bartolini, G. and Ferrara, A., “Multi-input sliding mode control of a class of uncertain nonlinear system,” IEEE Trans. on Automatic Control, vol. 41, no. 11, pp. 1662-1667, 1996.
    [3] Buse, R., Liu, Z. Q. and Bezdek, J., “ Word recognition using fuzzy logic,” IEEE Transaction on Fuzzy Systems, vol. 10, no. 1, pp. 65-76, 2002.
    [4] Chen, J. Y., “Expert SMC-based fuzzy control with genetic algorithms,” Journal of the Franklin Institute, vol. 336, pp. 589-610, 1999.
    [5] Chen, T. T. and Li, T. H. S., “Design of two-stage simplex variable structure controller for singularly perturbed discrete-time systems,” Proc. of the 2nd Asian Control Conf. II, Seoul, Korea, pp. 603-606, 1997.
    [6] Chen, T. T. and Li, T. H. S., “Simplex-type fuzzy sliding-mode control,” Fuzzy Sets and Systems, vol. 124, pp. 249-261, 2001.
    [7] Diong, B. M., Simplex-Type Variable Structure Controllers for Stability and Performance, Ph. D. Dissertation of University of Illinois at Urban-Champaign, 1992.
    [8] Diong, B. M., “On designing the control vectors in simplex-type sliding-mode control systems,” Proceedings of ACC, vol. 3, pp. 2150 –2154, 1997.
    [9] Diong, B. M., “On the design of simplex control for plants with bounded disturbances,” Proceedings of the Twenty-Ninth Southeastern Symposium on System Theory, pp. 108 -111. 1997.
    [10] Diong, B. M. and Medanic, J. V., “Dynamic output feedback variable structure control system stabilization,” Int. J. Control, vol. 56, no. 3, pp. 607-630, 1992.
    [11] Diong, B. M. and Medanic, J. V., “Simplex-type variable structure controllers for system with non-matching disturbances and uncertainties,” Int. J. Control, vol. 68, no.3, pp. 625-656, 1997.
    [12] Decarlo, R. A., Zak, S. H., Matthews, G. P., “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. of The IEEE, vol. 76, pp. 212-232, 1988.
    [13] Dorling, C. M. and Zinober, A. S., “Two approaches to hyperplane design in multivariable variable structure control systems,” Int. J. Control, vol. 44, pp. 65-82, 1986.
    [14] Doulgeri, Z., “Sliding regime of a nonlinear robust controller for robot manipulators,” IEE Proc Control Theory, vol. 146, no. 6, pp. 493-498, 1999.
    [15] Edwards, C. and Spurgeon, S. K., Sliding Mode Control: Theory and Applications, London: Taylor & Francis, 1998.
    [16] Elghezawi, M. E., Zinober, A. S. I. and Billings, S. A., “Analysis and design of variable structure systems using a geometric approach,” Int. J. Control, vol. 38, 657-671, 1983.
    [17] Fuller, A. T., “Condition for a matrix to have only characteristic roots with negative real part,” J. Math. Anal. Appl, vol. 23, pp. 71-98, 1987.
    [18] Fujikawa, S. J., Kobayashi, H. and Dote, Y., “Variable-structured robust controller by fuzzy logic for servomotors,” IEEE Trans. on Industrial Electronics, vol. 40, pp. 80-88, 1993
    [19] Fung, R. F., Chen, K.W., Yen, J. Y., “Fuzzy sliding mode controlled slide-crank mechanism using a PM synchronous servo motor drive,” Internal Journal of Mechanical Science, vol. 41, pp. 337-355, 1999.
    [20] Gajic, Z. and Shen, X., “Study of the discrete singularly perturbed linear-quadratic control problem by a bilinear transformation,” Automatica, vol. 27, no.6, pp. 1025-1028, 1991.
    [21] Ge, S. S., Lee, T. H., Zhu, G., “Genetic algorithm tuning of Lyapunov- based controllers: an application to a single- link flexible robot system,” IEEE Trans. on Industrial Electronics, vol. 43 no. 5, pp. 567-573, 1996.
    [22] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [23] Grefenstette, J. J., “Optimization of control parameters for genetic algorithms,” IEEE Trans. on Systems, Man, and Cyberneticc, vol. SMC-16, no.1, pp. 122-128, 1986.
    [24] Habibi, S. R. and Richards, R. J., “Sliding mode control of an electrically powered industrial robot,” IEE Proc.-D, vol. 139, no. 2, pp. 207-225, 1992.
    [25] Harries, C. J., Moore, C. G., and Brown, M., Intelligent Control: Aspects of Fuzzy Logic and Neural Nets, World Scientific Pub. Co. Pte. Ltd., Singopore, 1993.
    [26] Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, 1975.
    [27] Hung, J. Y., Gao, W. and Hung, J. C., “Variable structure control: a survey,” IEEE Trans. on Industrial Electronics, vol. 40, pp. 2-22, 1993.
    [28] Hung, J. Y. and Stevenson, P. B., “An output feedback sliding mode speed regulator for DC drives,” IEEE Trans. on Industrial applications, vol. 3, no. 3, pp. 691-698, 1994.
    [29] Huang, J. J., Simplex Sliding Mode Control of Singular Perturbation Systems, Master Thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1995.
    [30] Huang, J. J. and Li, T. H. S., “Discrete simplex sliding mode control and its application to singular perturbation systems,” Proc. of IEEE IECON’96, pp. 275-280, 1996.
    [31] Huang, S. J. and Huang, K. S., “An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection,” IEEE Trans. on Industrial Electronics, vol. 48, no. 4, pp. 845-852, 2001.
    [32] Hwang, G. C. and Lin, S. C., “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy sets and Systems, vol. 48, pp.79-287, 1992.
    [33] Ishingame, A., Furukawa, T., Kawamoto, S. and Taniguchi, T., “Sliding mode controller design based on fuzzy Inference for nonlinear systems,” IEEE Trans. on Industrial Electronics, vol. 40, pp. 64-70,.1993.
    [34] Jang, J. S. R., Sun, C. T., Mizutani, E., Neuro-Fuzzy and Soft Computing A Computational Approach to Learning and Machine Intelligence, Prentice Hall International Editions.
    [35] Jafarov, E. M. and Tasaltin, R., “Robust sliding-mode control for uncertain MIMO aircraft model F-18,” IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1127-1142, 2000.
    [36] Jeffrey, T. Spooner and Kevin, M. P., “Decentralized adaptive control of nonlinear system using radial basis neural networks,” IEEE Trans. on Automatic Control, vol. 44, no. 11, pp. 2050-2057, 1999.
    [37] Kando, H. and Iwazumi, T., “Sub-optimal control of discrete regulator problems via time-scale decomposition,” Int. J. Control, vol. 37, pp. 1323-1347, 1983.
    [38] Kando, H. and Iwazumi, T., “Stabilizing feedback controllers for singularly perturbed discrete systems,” IEEE Transaction on Systems Man Cybernatics, vol. 14, pp. 903-911, 1984.
    [39] Kando, H. and Iwazumi, T., “Design of observers and stabilizing feedback controllers for singularly perturbed discrete systems,” Proceeding of IEE, Part D, Control Theory and Application, vol. 132, pp. 1-10, 1985.
    [40] Kando, H. and Iwazumi, T., “Multirate digital control design of an optimal regulator via singular perturbation theory,” International Journal of Control, vol. 44, pp.1555-1578, 1986.
    [41] Kando, H. and Iwazumi, T., and Ukai, H., “Singular perturbation modeling of large scale systems with multi-time-scale property,” International Journal of Control, vol. 48, pp. 2361-2387, 1988.
    [42] Kandel, A. and Langholz, G., Fuzzy Control Systems, CRC Press, Inc., U. S. A., 1994.
    [43] Kim, S. W. and Lee, J. J., “Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets and Systems,” vol. 71, pp. 359-367, 1995.
    [44] Kokotovic, P. V., “Applications of singular perturbations techniques to control problem,” SIAM Review, vol. 26, pp. 501-549, 1984.
    [45] Kokotovic, P. V., Khalil, H. K. and Reilly, J. O., Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York, 1986.
    [46] Kung, C. C. and Liao, C. C., “Fuzzy-sliding mode control design for tracking control of non-linear system,” Proc. Of the American Control Conf., Baltimore, Maryland, pp. 180-184, 1994.
    [47] Kuo, C. H., Wu, L. J., “ An image tracking system for welded seams using fuzzy logic,” Journal of Materials processing Technology, vol. 120, pp. 169-185, 2002.
    [48] Lee, C. C., “Fuzzy logic in control system: fuzzy logic controller part I & II,” IEEE Trans. on System Man. and Cyber, vol. 20, 404-435, 1990.
    [49] Lee, J., “On methods for improving performance of PI-type fuzzy logic controllers,” IEEE Trans. Fuzzy System, vol.1, pp.298-301, 1993.
    [50] Litkouhi, B. and Khalil, H., “Multirate and composite control of two-time-scale discrete-time system,” IEEE Trans. Automatic Control, vol. 30, pp. 645-651, 1984.
    [51] Li, T. H. S. and Tsai, C. Y., “Parallel fuzzy sliding mode control of the cart-pole system,” Proc. of the IEEE IECON’95, Orlando, U.S.A., pp. 1468-1473, 1995.
    [52] Linkens, D. A., Nyongesa, H. O., “Genetic algorithms for fuzzy control-Part 1: offline system development and application,” IEE Proc. Control Theory Appl., vol. 142, pp. 161-185, 1995.
    [53] Li, Y., Chweeng, K., Murray-Smith. D. J., Gray, J. and Sharman, K. C., “Genetic algorithm automated approach to the design of sliding mode control systems,” Int. J. Control, vol. 63, no. 4, pp. 721-739, 1996.
    [54] Lin, S. C., Chen, Y. Y., “Design of self-learning fuzzy sliding mode controllers based on genetic algorithms,” Fuzzy Sets and Systems, vol. 86, pp. 129-153, 1997.
    [55] Lin, H. R. and Wang, W. J., “Real-coded genetic algorithm based fuzzy sliding-mode control design for precision,” IEEE World Congress on Computational Intelligence, vol.1, pp. 292-295, 1998.
    [56] Li, T. H. S. and Chiou, J. S. and Kung, F. C., “Stability bounds of singularly perturbed discrete systems,” IEEE Transaction on Automatic Control, vol. 44, no. 10, pp. 1934-1938, 1999.
    [57] Li, T. H. S. and Chiou, J. S., “A new D-stability criterion of multi parameter singularly perturbed discrete systems,” IEEE Transaction on Circuit and Systems-I: Fundamental Theory and Applications, vol. 49, no. 8, pp. 1226-1231, 2002.
    [58] Lin, F. J., Wai, R. J., “Hybrid computed torque controlled motor-toggle servomechanism using fuzzy neural network uncertainty observer,” Neurocomputing, vol. 48, pp. 403-422, 2002.
    [59] Lo, J. C., Kuo, Y. H., “A sliding-mode approach to fuzzy control design,” IEEE Transactions on control Systems Technology, vo.4, no. 2, pp. 141 -151, 1996.
    [60] Mandani, H., “Applications of fuzzy algorithms for simple dynamic plants,” Proc. of IEEE, vol. 121, pp. 1585-1588, 1974.
    [61] Mahmoud, M. S. and Chen, Y. and Singh, M. G., “Discrete two-time-scale systems,” International Journal of Systems Science, vol.17, no. 8, pp. 1187-1207, 1986.
    [62] Man, K. F., Tang, K.S., Kwong S., “Genetic algorithms: concepts and applications,” IEEE Trans. Indust. Electr., vol. 43, pp. 519-534, 1996.
    [63] Narendra, K. S. and Tripathi, S. S., “Identification and optimization of aircraft dynamics,” J. Aircraft, vol. 10 193-199, 1973.
    [64] Naidu, D. S., “Singular perturbations and time scales in control theory and applications: an overview,” Dynamics of Continuous, Discrete & Impulsive Systems Series B: Applications &Algorithm, vol. 9 no. 1, pp. 153-333, 2002.
    [65] Naidu, D. S. and Price, D. B., “Time-scale synthesis of a closed-loop discrete optimal control system,” AIAA Journal of Guidance, Control and Dynamics, vol. 10, pp. 417-421, 1987.
    [66] Naidu, D. S. and Price, D. B., and Hibey, J. L., “Singular perturbations and time scales (SPaTS) in discrete control systems-an overview,” Proceeding of The 26th Conference on Decision and Control, Los Angeles, CA, pp. 2086-2103, 1987.
    [67] Ng, K. C., Li, Y.; Murray-Smith, D.J.; Sharman, K.C., “Genetic algorithms applied to fuzzy sliding mode controller design,” in Proc. 1st IEE/IEEE int. Conf. GA’s in Engineering System: Innovations and Applications, GALESIA ’95, 1995, pp. 220-225.
    [68] Novakovic, B., Scap, D. and Novakovic, D., “An analytic approach to fuzzy robot control synthesis,” Engineering Applications of Artificial Intelligence, vol. 13, no. 1, pp. 71-83, 2000.
    [69] Obavashi, S., “Genetic algorithm for aerodynamic inverse optimization problems,” in Proc. 1st IEE/IEEE int. Conf. GA’s in Engineering System: Innovations and Applications, GALESIA ’95, pp.7-12, 1995.
    [70] Palm, R., “Robust control by fuzzy sliding mode,” Automatica, vol. 30, pp. 1429-1437, 1994.
    [71] Phillips, R. G., “Reduced order modelling and control of two-time-scale discrete Systems,” Int. J. Control, vol. 31, pp. 765-780, 1980.
    [72] Qin, S. J., and Borders, G., “A multiregion fuzzy logic controller for nonlinear process control,” IEEE Trans. on Fuzzy Systems, vol. 2, pp. 74-81, 1994.
    [73] Saksena, V. R., O’Reilly, J. and Kokotovic, P. V., “Singular perturbations and time scale methods in control theory-survey 1976-1983,” Automatica, vol. 20, pp.273-293, 1984.
    [74] Shao, S., “Fuzzy self-organizing controller and its application for dynamic processes,” Fuzzy Sets and Systems, vol. 26, pp. 151-164, 1988.
    [75] Shieh, L. S., Wang, W. M. and Tsai, J. S. H., “Digital modelling and digital redesign of sampled-data uncertain systems,” IEE Proc.-Control Theory Appl., vol. 142, pp. 585-594, 1995.
    [76] Shyu, K. K., Lin, F. J., Lin, H.-J. and Juan, B.-S., “Robust variable structure speed control for induction motor drive,” IEEE Trans. on Aerospace and Electronic Systems, vol. 35, no. 1, pp. 215-224, 1999.
    [77] iljak, D. D.,” Parameter space methods for robust control design: a guided tour,” IEEE Trans. on Automatic Control, vol. 34, no. 7, pp. 674-686, 1989.
    [78] Silva, J. F., “Sliding-mode control of boost-type unity-power-factor PWM rectifiers,” IEEE Trans. on Industrial Electronics, vol. 46, no. 3, pp. 594-603, 1999.
    [79] Slotine, J. J. E., “Sliding controller design for nonlinear system,” International Journal of Control, vol. 40, pp. 421-434, 1984.
    [80] Su, W. C., Drakunov, S. V. and Ozguner, U., “Constructing discontinuity surfaces for variable structure systems: a Lyapunov approach,” Automatica, vol. 32 pp. 925-928, 1996.
    [81] Sugeno, M., Industrial Applications of Fuzzy Control, North-Holland, Amsterdam, 1985.
    [82] Suyitno, J., Kobayashi F. H. and Dote Y., “Variable-structured robust controller by fuzzy logic for servomotors,” IEEE Trans. on Industrial Electronics, vol. 40, pp. 80-88, 1993.
    [83] Tai, T. L. and Chen, J. S., “UPS inverter design using discrete-time sliding-mode control scheme,” IEEE Trans. on Industrial Electronics, vol. 49, no. 1, pp. 67-75, 2002.
    [84] Temeltas, H., “A fuzzy sliding mode controller for induction motor position control,” Proc. of IEEE ISIE '98, vol.1, pp.110 -115, 1998.
    [85] Ting, J S., Li T. H. S. and Kung F. C., “An approach to systematic design of the fuzzy control system,” Fuzzy Sets and Systems, vol. 27, pp. 151-166, 1996.
    [86] Tran, M. T. and Sawan, M. E., “Decentralized control for two time-scale discrete-time system,” Int. J. Systems. SCI., vol. 15, pp.1295-1300, 1984.
    [87] Tran, M. T. and Sawan, M. E., “On the well-posedness of discrete-time system with slow and fast modes,” Int. J. Systems SCI., vol. 15, pp. 1289-1294, 1984.
    [88] Tzafestas, S. -G. and Venetsanopoulos, A. N. Eds., Fuzzy Reasoning in Information, Ddecision and Control System, Chap. 10, Kluwer Academic, London, pp. 277-306, 1994
    [89] Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Trans. on Automatic Control, vol. 22, pp. 212-222, 1977.
    [90] Utkin, V. I., Sliding Modes and Their Application in Variable Structure System, Mir Publishers, Moscow (English Translation), 1978.
    [91] Utkin, V. I. and Yang, K. D., “Methods for constructing discontinuity planes in multidimensional variable structure systems,” Autom. Remo. Control, vol. 39, pp. 1466-1470, 1979.
    [92] Varsek, A., Urbancic, T. and Filipic, B., “Genetic algorithms in control design and tuning,” IEEE Trans. on Systems, and Cybernetics, vol. 23, no. 5, pp. 1330-1339, 1993.
    [93] Wang, L. X., “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. on Fuzzy Systems. vol. 1, pp. 146-155, 1993.
    [94] Wai, R. J., “Hybrid control for speed sensorless induction motor drive,” IEEE Transaction on Fuzzy Systems, vol. 9, no. 1, pp. 116-138, 2001.
    [95] Woodham, C. A. and Zinober, A. S., “Eigenvalue placement in a specified sector for variable structure control systems,” Int. J. Control, vol. 57, pp. 021-1037, 1993.
    [96] Wong, C. C., Feng, S. M., “Switching-type fuzzy controller design by genetic algorithms,” Fuzzy Sets and Systems vol.74, pp. 174-185, 1995.
    [97] Wong, L.-K., Leung, F. H. F. and Tam, P. K. S. “A fuzzy sliding controller for nonlinear systems,” IEEE Trans. on Industrial Electronics, vol. 48, no. 1, pp. 32-37, 2001.
    [98] Wu, B. and Tseng, N. F., “A new approach to fuzzy regression models with application to business cycle analysis,” Fuzzy Sets and Systems, vol. 130, pp. 33-42, 2002.
    [99] Zadeh, L. A., “Fuzzy sets,” Information Control, vol. 8, pp. 338-353, 1965.
    [100] Zbigniew, M., Genetic Algorithms+Data Structures=Evolution Programs, springer 1996.
    [101] Zhang, D. Q. and Panda, S. K., “Chattering-free and fast-response sliding mode controller,” IEE Proc. Control Theory Application, vol. 146, no. 2, pp. 171-177, 1999.

    下載圖示 校內:2004-06-09公開
    校外:2004-06-09公開
    QR CODE